
Setup
This training can be done in two ways:

on a local machine (proceed with Local Machine Setup)
on a provided virtual machine using the webshell (proceed with Webshell access)

Local machine setup
Technical prerequisites
To run this training on your local machine please make sure the following requirements are met:

Operating System: Linux with Kernel >= 4.9.17 or MacOS
Docker installed
kubectl >= 1.24 installed
minikube >= 1.26 installed
helm installed
Minimum 8GB RAM

A note on Windows with WSL2: As of August 2022 the default kernel in WSL is missing some Netfilter
modules. You can compile it yourself , but the training staff cannot give you any support with cluster related
issues.

Install minikube
This training uses minikube to provide a Kubernetes Cluster.

Check the minikube start Guide for instructions on how to install minikube on your system. If you are using
the provided virtual machine minikube is already installed.

Install helm
For a complete overview refer to the helm installation website . If you have helm 3 already installed you can
skip this step.

Use your package manager (apt , yum , brew etc), download the latest Release or use the following
command to install helm helm:

Webshell access
Your trainer will give you the necessary details.

curl -s https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 || bash

- acend gmbh

1 / 101

https://docs.docker.com/get-docker/
https://kubernetes.io/docs/tasks/tools/#kubectl
https://github.com/cilium/cilium/issues/17745#issuecomment-1004299480
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/start/
https://helm.sh/docs/intro/install/
https://github.com/helm/helm/releases
https://helm.sh/docs/intro/install/

1. Cleanup

Remove Kubernetes Cluster
You can list and then remove the minikube Kubernetes clusters with the following command

minikube profile list
minikube delete -p cluster1
minkube delete -p cluster2

- acend gmbh

2 / 101

Labs
The purpose of these labs is to convey Cilium basics by providing hands-on tasks for people.

Goals of these labs:

Help you get started with this modern technology
Explain the basic concepts to you

Additional Docs
Cilium documentation

- acend gmbh

3 / 101

https://docs.cilium.io/en/v1.10/

1. Introduction
(from https://docs.cilium.io/en/v1.9/intro/)

What is Cilium?
Cilium is open source software for transparently securing the network connectivity between application
services deployed using Linux container management platforms like Docker and Kubernetes.

At the foundation of Cilium is a new kernel technology called eBPF , which enables the dynamic insertion of
powerful security visibility and control logic within Linux itself. Because eBPF runs inside the Linux kernel,
Cilium security policies can be applied and updated without any changes to the application code or
container configuration.

What is Hubble?
Hubble is a fully distributed networking and security observability platform. It is built on top of Cilium and
eBPF to enable deep visibility into the communication and behavior of services as well as the networking
infrastructure in a completely transparent manner.

By building on top of Cilium, Hubble can leverage eBPF for visibility. By relying on eBPF, all visibility is
programmable and allows for a dynamic approach that minimizes overhead while providing deep and
detailed visibility as required by users. Hubble has been created and specifically designed to make best use
of these new eBPF powers.

Hubble can answer questions such as:

Service dependencies & communication map
What services are communicating with each other? How frequently? What does the service dependency
graph look like?
What HTTP calls are being made? What Kafka topics does a service consume from or produce to?

Network monitoring & alerting
Is any network communication failing? Why is communication failing? Is it DNS? Is it an application or
network problem? Is the communication broken on layer 4 (TCP) or layer 7 (HTTP)?
Which services have experienced a DNS resolution problem in the last 5 minutes? Which services have
experienced an interrupted TCP connection recently or have seen connections timing out? What is the
rate of unanswered TCP SYN requests?

Application monitoring
What is the rate of 5xx or 4xx HTTP response codes for a particular service or across all clusters?
What is the 95th and 99th percentile latency between HTTP requests and responses in my cluster?
Which services are performing the worst? What is the latency between two services?

Security observability
Which services had connections blocked due to network policy? What services have been accessed from
outside the cluster? Which services have resolved a particular DNS name?

- acend gmbh

4 / 101

https://docs.cilium.io/en/v1.9/intro/
https://ebpf.io/

Why Cilium & Hubble?
eBPF is enabling visibility into and control over systems and applications at a granularity and efficiency that
was not possible before. It does so in a completely transparent way, without requiring the application to
change in any way. eBPF is equally well-equipped to handle modern containerized workloads as well as
more traditional workloads such as virtual machines and standard Linux processes.

The development of modern datacenter applications has shifted to a service-oriented architecture often
referred to as microservices, wherein a large application is split into small independent services that
communicate with each other via APIs using lightweight protocols like HTTP. Microservices applications tend
to be highly dynamic, with individual containers getting started or destroyed as the application scales out /
in to adapt to load changes and during rolling updates that are deployed as part of continuous delivery.

This shift toward highly dynamic microservices presents both a challenge and an opportunity in terms of
securing connectivity between microservices. Traditional Linux network security approaches (e.g., iptables)
filter on IP address and TCP/UDP ports, but IP addresses frequently churn in dynamic microservices
environments. The highly volatile life cycle of containers causes these approaches to struggle to scale side
by side with the application as load balancing tables and access control lists carrying hundreds of thousands
of rules that need to be updated with a continuously growing frequency. Protocol ports (e.g. TCP port 80 for
HTTP traffic) can no longer be used to differentiate between application traffic for security purposes as the
port is utilized for a wide range of messages across services.

An additional challenge is the ability to provide accurate visibility as traditional systems are using IP
addresses as primary identification vehicles which may have a drastically reduced lifetime of just a few
seconds in microservices architectures.

By leveraging Linux eBPF, Cilium retains the ability to transparently insert security visibility + enforcement
but does so in a way that is based on service/pod/container identity (in contrast to IP address identification
in traditional systems) and can filter on application-layer (e.g. HTTP). As a result, Cilium not only makes it
simple to apply security policies in a highly dynamic environment by decoupling security from addressing
but can also provide stronger security isolation by operating at the HTTP layer in addition to providing
traditional Layer 3 and Layer 4 segmentation.

The use of eBPF enables Cilium to achieve all of this in a way that is highly scalable even for large-scale
environments.

1.1. eBPF

What is eBPF
(from https://ebpf.io/)

eBPF is a revolutionary technology with origins in the Linux kernel that can run sandboxed programs in an
operating system kernel. It is used to safely and efficiently extend the capabilities of the kernel without
requiring to change kernel source code or load kernel modules.

Historically, the operating system has always been an ideal place to implement observability, security, and
networking functionality due to the kernel’s privileged ability to oversee and control the entire system. At
the same time, an operating system kernel is hard to evolve due to its central role and high requirement
towards stability and security. The rate of innovation at the operating system level has thus traditionally
been lower compared to functionality implemented outside of the operating system.

- acend gmbh

5 / 101

https://ebpf.io/

eBPF changes this formula fundamentally. By allowing to run sandboxed programs within the operating
system, application developers can run eBPF programs to add additional capabilities to the operating
system at runtime. The operating system then guarantees safety and execution efficiency as if natively
compiled with the aid of a Just-In-Time (JIT) compiler and verification engine. This has led to a wave of eBPF-
based projects covering a wide array of use cases, including next-generation networking, observability, and
security functionality.

Today, eBPF is used extensively to drive a wide variety of use cases: Providing high-performance
networking and load-balancing in modern data centers and cloud native environments, extracting fine-
grained security observability data at low overhead, helping application developers trace applications,
providing insights for performance troubleshooting, preventive application and container runtime security
enforcement, and much more. The possibilities are endless, and the innovation that eBPF is unlocked has
only just begun.

Security
Building on the foundation of seeing and understanding all system calls and combining that with a packet
and socket-level view of all networking operations allows for revolutionary new approaches to securing
systems. While aspects of system call filtering, network-level filtering, and process context tracing have
typically been handled by completely independent systems, eBPF allows for combining the visibility and
control of all aspects to create security systems operating on more context with a better level of control.

- acend gmbh

6 / 101

Tracing & Profiling
The ability to attach eBPF programs to tracepoints as well as kernel and user application probe points allows
unprecedented visibility into the runtime behavior of applications and the system itself. By giving
introspection abilities to both the application and system side, both views can be combined, allowing
powerful and unique insights to troubleshoot system performance problems. Advanced statistical data
structures allow extracting meaningful visibility data efficiently, without requiring the export of vast
amounts of sampling data as typically done by similar systems.

Networking
The combination of programmability and efficiency makes eBPF a natural fit for all packet processing
requirements of networking solutions. The programmability of eBPF enables adding additional protocol
parsers and easily programming any forwarding logic to meet changing requirements without ever leaving
the packet processing context of the Linux kernel. The efficiency provided by the JIT compiler provides
execution performance close to that of natively compiled in-kernel code.

Observability & Monitoring
Instead of relying on static counters and gauges exposed by the operating system, eBPF enables the
collection & in-kernel aggregation of custom metrics and generation of visibility events based on a wide
range of possible sources. This extends the depth of visibility that can be achieved as well as reduces the
overall system overhead significantly by only collecting the visibility data required and by generating
histograms and similar data structures at the source of the event instead of relying on the export of
samples.

- acend gmbh

7 / 101

Featured eBPF Talks

- acend gmbh

8 / 101

2. Install Cilium

2.1. Install Cilium
Cilium can be installed using multiple ways:

Cilium CLI
Using Helm

In this lab, we are going to use Helm which is recommended for production use. The Cilium command-line
tool is used (Cilium CLI) for verification and troubleshooting.

Task 2.1.1: Install a Kubernetes Cluster
We are going to spin up a new Kubernetes cluster with the following command:

Minikube installed a new Kubernetes cluster without any Container Network Interface (CNI). CNI installation
happens in the next task.

Minikube added a new context to your Kubernetes config file and set this as default. Verify this with the
following command:

This should show cluster1 . Now check that everything is up and running:

This should produce a similar output:

Note
To start from a clean Kubernetes cluster, make sure cluster1 is not yet available. You can verify this with
minikube profile list. If you already have a cluster1 you can delete the cluster with minikube delete -p cluster1.

minikube start --network-plugin==cni --cni==false --kubernetes-version==1.24.3 -p cluster1

Note
During this training, you will create multiple clusters. For this, we use a feature in Minikube called profile
which you see with the -p cluster1 option. You can list all your profiles with minikube profile list and you can
change to another cluster with minikube profile <profilename>, this will also set your current context for kubectl
to the specified profile/cluster.

kubectl config current-context

kubectl get node

- acend gmbh

9 / 101

https://helm.sh
https://github.com/cilium/cilium-cli/

NAME STATUS ROLES AGE VERSION
cluster1 Ready control-plane,master 86s v1.24.3

Depending on your Minikube version and environment your node might stay NotReady because no CNI is
installed. After we installed Cilium it will become ready.

Check if all pods are running with:

which produces the following output

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-6d4b75cb6d-nf8wz 0/1 ContainerCreating 0 3m1s
kube-system etcd-cluster1 1/1 Running 0 3m7s
kube-system kube-apiserver-cluster1 1/1 Running 0 3m16s
kube-system kube-controller-manager-cluster1 1/1 Running 0 3m7s
kube-system kube-proxy-7l6qk 1/1 Running 0 3m1s
kube-system kube-scheduler-cluster1 1/1 Running 0 3m7s
kube-system storage-provisioner 1/1 Running 0 3m11s

Task 2.1.2: Install Cilium CLI
The cilium CLI tool is a single binary file that can be downloaded from the project’s release page. Follow the
instructions depending on your operating system or environment.

Linux/Webshell Setup

Execute the following command to download the cilium CLI:

macOS Setup
Execute the following command to download the cilium CLI:

kubectl get pod -A

Note
Depending on your Minikube version, coredns might start or not which is ok. But you should not see any
CNI related pods!

Note
If you are working in our webshell based lab setup, please always follow the Linux setup.

curl -L --remote-name-all https://github.com/cilium/cilium-cli/releases/download/v0.12.12/cilium-linux-amd64.tar.gz{{,.s
ha256sum}}
sha256sum --check cilium-linux-amd64.tar.gz.sha256sum
sudo tar xzvfC cilium-linux-amd64.tar.gz /usr/local/bin
rm cilium-linux-amd64.tar.gz{{,.sha256sum}}

- acend gmbh

10 / 101

Cilium CLI
Now that we have the cilium CLI let’s have a look at some commands:

which should give you an output similar to this:

cilium-cli: v0.12.12 compiled with go1.19.4 on linux/amd64
cilium image (default): v1.12.5
cilium image (stable): v1.12.5
cilium image (running): unknown. Unable to obtain cilium version, no cilium pods found in namespace "kube-system"

Then let us look at

cilium status
 /¯¯\
 /¯¯__/¯¯\ Cilium: 1 errors
 __/¯¯__/ Operator: disabled
 /¯¯__/¯¯\ Hubble: disabled
 __/¯¯__/ ClusterMesh: disabled
 __/

Containers: cilium
 cilium-operator
Cluster Pods: 0/0 managed by Cilium
Errors: cilium cilium daemonsets.apps "cilium" not found

We don’t have yet installed Cilium, therefore the error is perfectly fine.

Task 2.1.3: Install Cilium
Let’s install Cilium with Helm. First we need to add the Cilium Helm repository:

curl -L --remote-name-all https://github.com/cilium/cilium-cli/releases/download/v0.12.12/cilium-darwin-amd64.tar.gz{{,.
sha256sum}}
shasum -a 256256 -c cilium-darwin-amd64.tar.gz.sha256sum
sudo tar xzvfC cilium-darwin-amd64.tar.gz /usr/local/bin
rm cilium-darwin-amd64.tar.gz{{,.sha256sum}}

cilium version

Note
It’s ok if your installation does not show the same version.

cilium status

helm repo add cilium https://helm.cilium.io/ --force-update

- acend gmbh

11 / 101

and then we can install Cilium:

For all values possible in the Cilium Helm chart, have a look at the Repository or the Helm Reference in
Cilium’s documentation. We disable the kubeProxyReplacement because it would cause problems with
multiple clusters running on the same kernel in the later chapters.

and now run again the

command:

cilium status
 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: disabled
 __/¯¯__/ ClusterMesh: disabled
 __/

DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium Running: 1
 cilium-operator Running: 1
Cluster Pods: 1/1 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.11.7: 1
 cilium-operator quay.io/cilium/operator-generic:v1.11.7: 1

Take a look at the pods again to see what happened under the hood:

and you should see now the Pods related to Cilium:

helm upgrade -i cilium cilium/cilium --version 1.11.7 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDR==10.1.0.0/16 \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set kubeProxyReplacement==disabled \
 --wait

Note
You will see a deprecation warning for beta.kubernetes.io/os, this can be ignored for now.

cilium status --wait

Note
If the output is not the same, make sure all Cilium container are up and in a ready state.

kubectl get pods -A

- acend gmbh

12 / 101

https://github.com/cilium/cilium/tree/master/install/kubernetes/cilium
https://docs.cilium.io/en/stable/helm-reference/

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system cilium-operator-77577756b6-ksnbw 1/1 Running 0 58s
kube-system cilium-q4p6q 1/1 Running 0 58s
kube-system coredns-6d4b75cb6d-nf8wz 1/1 Running 0 2m42s
kube-system etcd-cluster1 1/1 Running 0 2m54s
kube-system kube-apiserver-cluster1 1/1 Running 0 2m54s
kube-system kube-controller-manager-cluster1 1/1 Running 0 2m54s
kube-system kube-proxy-7l6qk 1/1 Running 0 2m42s
kube-system kube-scheduler-cluster1 1/1 Running 0 2m54s
kube-system storage-provisioner 1/1 Running 1 (2m11s ago) 2m53s

Alright, Cilium is up and running, let us make some tests. The cilium CLI allows you to run a connectivity
test:

This will run for some minutes, let’s wait.

ℹ️ Single-node environment detected, enabling single-node connectivity test

ℹ️ Monitor aggregation detected, will skip some flow validation steps

� [cluster1] Creating namespace cilium-test for connectivity check...
� [cluster1] Deploying echo-same-node service...

� [cluster1] Deploying DNS test server configmap...
� [cluster1] Deploying same-node deployment...
� [cluster1] Deploying client deployment...
� [cluster1] Deploying client2 deployment...
� [cluster1] Waiting for deployments [client client2 echo-same-node] to become ready...

� [cluster1] Waiting for CiliumEndpoint for pod cilium-test/client-755fb678bd-hfd8w to appear...

� [cluster1] Waiting for CiliumEndpoint for pod cilium-test/client2-5b97d7bc66-5cfsm to appear...

� [cluster1] Waiting for pod cilium-test/client-755fb678bd-hfd8w to reach DNS server on cilium-test/echo-same-node-6477
4c64d5-rmj25 pod...
� [cluster1] Waiting for pod cilium-test/client2-5b97d7bc66-5cfsm to reach DNS server on cilium-test/echo-same-node-647
74c64d5-rmj25 pod...

� [cluster1] Waiting for pod cilium-test/client-755fb678bd-hfd8w to reach default/kubernetes service...

� [cluster1] Waiting for pod cilium-test/client2-5b97d7bc66-5cfsm to reach default/kubernetes service...

� [cluster1] Waiting for CiliumEndpoint for pod cilium-test/echo-same-node-64774c64d5-rmj25 to appear...

� [cluster1] Waiting for Service cilium-test/echo-same-node to become ready...

� [cluster1] Waiting for NodePort 192.168.49.2:30598 (cilium-test/echo-same-node) to become ready...

ℹ️ Skipping IPCache check

� Enabling Hubble telescope...
⚠ ️ Unable to contact Hubble Relay, disabling Hubble telescope and flow validation: rpc error: code = Unavailable desc =
 connection error: desc = "transport: Error while dialing dial tcp 127.0.0.1:4245: connect: connection refused"

Note
It might take some time until all Pods ar in state Runnning and READY. Wait before continue.

cilium connectivity test

Note
As we installed an older version of cilium but are using the latest cilium CLI, it’s ok if some tests are failing.

- acend gmbh

13 / 101

 connection error: desc = "transport: Error while dialing dial tcp 127.0.0.1:4245: connect: connection refused"
ℹ️ Expose Relay locally with:
 cilium hubble enable
 cilium hubble port-forward&
ℹ️ Cilium version: 1.11.7
� Running tests...
[=] Test [no-policies]
....................
[=] Test [allow-all-except-world]
........
[=] Test [client-ingress]
..
[=] Test [all-ingress-deny]
......
[=] Test [all-egress-deny]
........
[=] Test [all-entities-deny]
......
[=] Test [cluster-entity]
..
[=] Test [host-entity]
..
[=] Test [echo-ingress]
..

[=] Skipping Test [client-ingress-icmp]
[=] Test [client-egress]
..
[=] Test [client-egress-expression]
..
[=] Test [client-egress-to-echo-service-account]
..
[=] Test [to-entities-world]
......
[=] Test [to-cidr-1111]
....
[=] Test [echo-ingress-from-other-client-deny]
....

[=] Skipping Test [client-ingress-from-other-client-icmp-deny]
[=] Test [client-egress-to-echo-deny]
....
[=] Test [client-ingress-to-echo-named-port-deny]
..
[=] Test [client-egress-to-echo-expression-deny]
..
[=] Test [client-egress-to-echo-service-account-deny]
..
[=] Test [client-egress-to-cidr-deny]
....
[=] Test [client-egress-to-cidr-deny-default]
....
[=] Test [health]
.
[=] Test [echo-ingress-l7]
......
[=] Test [echo-ingress-l7-named-port]
......
[=] Test [client-egress-l7-method]
......
[=] Test [client-egress-l7]
........
[=] Test [client-egress-l7-named-port]
........
[=] Test [dns-only]
........
[=] Test [to-fqdns]
........

� All 29 tests (145 actions) successful, 2 tests skipped, 1 scenarios skipped.

Once done, clean up the connectivity test Namespace:

- acend gmbh

14 / 101

Task 2.1.4: Explore your installation
We have learned about the Cilium components. Let us check out the installed CRDs now:

Which shows CRDs installed by Cilium:

And now we check all installed Cilium CRDs

We see 1 node, 1 identity and 1 endpoint:

This Pod is the only one which is NOT on the Host Network.

A CiliumNode is a host with cilium-agent installed. So this could also be VM outside Kubernetes.

We have discussed CNI plugin installations, let us check out the Cilium installation on the node.

We can either start a debug container on the node and chroot its /

kubectl delete ns cilium-test --wait==false

kubectl api-resources || grep cilium

ciliumclusterwidenetworkpolicies ccnp cilium.io/v2 false CiliumClusterwide
NetworkPolicy
ciliumendpoints cep,ciliumep cilium.io/v2 true CiliumEndpoint
ciliumexternalworkloads cew cilium.io/v2 false CiliumExternalWor
kload
ciliumidentities ciliumid cilium.io/v2 false CiliumIdentity
ciliumnetworkpolicies cnp,ciliumnp cilium.io/v2 true CiliumNetworkPoli
cy
ciliumnodes cn,ciliumn cilium.io/v2 false CiliumNode

kubectl get ccnp,cep,cew,ciliumid,cnp,cn -A

NAMESPACE NAME ENDPOINT ID IDENTITY ID INGRESS ENFORCEMENT EGRE
SS ENFORCEMENT VISIBILITY POLICY ENDPOINT STATE IPV4 IPV6
kube-system ciliumendpoint.cilium.io/coredns-64897985d-7485t 465465 6768867688
 ready 10.1.0.215

NAMESPACE NAME NAMESPACE AGE
 ciliumidentity.cilium.io/67688 kube-system 18m

NAMESPACE NAME AGE
 ciliumnode.cilium.io/cluster1 18m

Note
It might be possible that you still see identites created by cilium connectivity test. They will be deleted by
cilium-operator after max. 15 minutes.

- acend gmbh

15 / 101

or we use docker to access the node:

Now we have a shell with access to the node. We will check out the Cilium installation:

We make a few oberservations:

Kubernetes uses the configuration file with the lowest number so it takes Cilium with the prefix 05.
The configuration file is written as a CNI spec .
The cilium binary was installed to /opt/cni/bin.
Cilium created a virtual network interfaces pair cilium_net , cilium_host and the vxlan overlay interface
cilium_vxlan .

We see the virtual network interface (lxc device) of the coredns pod (the Endpoint in Cilium terms).

Install Cilium with the cilium cli
This is what the installation with the cilium cli would have looked like:

cilium install --config cluster-pool-ipv4-cidr=10.1.0.0/16 --cluster-name cluster1 --cluster-id 1 --version 1.11.7

Be careful to never use CLI and Helm together to install, this can break an already running Cilium
installation.

After this initial installation, we can proceed by upgrading to a newer version in the next lab.

kubectl debug node/cluster1 -it --image==busybox

chroot /host

docker exec -it cluster1 bash

ls -l /etc/cni/net.d/
cat /etc/cni/net.d/05-cilium.conf
/opt/cni/bin/cilium-cni --help
ip a
exit #exit twice if you used kubectl debug

- acend gmbh

16 / 101

https://github.com/containernetworking/cni/blob/master/SPEC.md#configuration-format

2.2. Upgrade Cilium
In the previous lab, we intentionally installed version v1.11.7 of Cilium. In this lab, we show you how to
upgrade this installation.

Task 2.2.1: Running pre-flight check
When rolling out an upgrade with Kubernetes, Kubernetes will first terminate the Pod followed by pulling the
new image version and then finally spin up the new image. In order to reduce the downtime of the agent
and to prevent ErrImagePull errors during the upgrade, the pre-flight check pre-pulls the new image version.
If you are running in “Kubernetes Without kube-proxy” mode you must also pass on the Kubernetes API
Server IP and/or the Kubernetes API Server Port when generating the cilium-preflight.yaml file.

Task 2.2.2: Clean up pre-flight check
To check the preflight Pods we check if the pods are READY using:

and you should get an output like this:

kube-system cilium-pre-flight-check-84f67b54f6-hz57g 1/1 Running 0 63s
kube-system cilium-pre-flight-check-skglp 1/1 Running 0 63s

The pods are READY with a value of 1/1 and therefore we can delete the cilium-preflight release again with:

Task 2.2.3: Upgrading Cilium
During normal cluster operations, all Cilium components should run the same version. Upgrading just one of
them (e.g., upgrading the agent without upgrading the operator) could result in unexpected cluster
behavior. The following steps will describe how to upgrade all of the components from one stable release to
a later stable release.

When upgrading from one minor release to another minor release, for example 1.x to 1.y, it is
recommended to upgrade to the latest patch release for a Cilium release series first. The latest patch
releases for each supported version of Cilium are here . Upgrading to the latest patch release ensures the
most seamless experience if a rollback is required following the minor release upgrade. The upgrade guides
for previous versions can be found for each minor version at the bottom left corner.

helm install cilium-preflight cilium/cilium --version 1.12.10 \
 --namespace==kube-system \
 --set preflight.enabled==true \
 --set agent==false \
 --set operator.enabled==false \
 --wait

kubectl get pod -A || grep cilium-pre-flight

helm delete cilium-preflight --namespace==kube-system

- acend gmbh

17 / 101

https://github.com/cilium/cilium#stable-releases

Helm can be used to either upgrade Cilium directly or to generate a new set of YAML files that can be used
to upgrade an existing deployment via kubectl. By default, Helm will generate the new templates using the
default values files packaged with each new release. You still need to ensure that you are specifying the
equivalent options as used for the initial deployment, either by specifying them at the command line or by
committing the values to a YAML file.

To minimize datapath disruption during the upgrade, the upgradeCompatibility option should be set to the
initial Cilium version which was installed in this cluster.

Task 2.2.4: Explore your installation after the upgrade
We can run:

again to verify the upgrade to the new version succeded

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set kubeProxyReplacement==disabled \
 --set upgradeCompatibility==1.11 \
 --wait

Note
When upgrading from one minor release to another minor release using helm upgrade , do not use Helm’s --

reuse-values flag. The --reuse-values flag ignores any newly introduced values present in the new release and
thus may cause the Helm template to render incorrectly. Instead, if you want to reuse the values from your
existing installation, save the old values in a values file, check the file for any renamed or deprecated
values, and then pass it to the helm upgrade command as described above. You can retrieve and save the
values from an existing installation with the following command:

The --reuse-values flag may only be safely used if the Cilium chart version remains unchanged, for example
when helm upgrade is used to apply configuration changes without upgrading Cilium.

helm get values cilium --namespace==kube-system -o yaml > old-values.yaml

cilium status --wait

- acend gmbh

18 / 101

 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: disabled
 __/¯¯__/ ClusterMesh: disabled
 __/

DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium-operator Running: 1
 cilium Running: 1
Cluster Pods: 1/1 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.12.10:: 1
 cilium-operator quay.io/cilium/operator-generic:v1.12.10@: 1

And we see the right version in the cilium and cilium-operator images.

Nice to know
In Cilium release 1.11.0 automatic mount of eBPF maps in the host filesystem were enabled. These eBPF
maps are basically very efficient key-value stores used by Cilium. Having them mounted in the filesystem,
allows the datapath to continue operating even if the cilium-agent is restarting. We can verify that Cilium
created global traffic control eBPF maps on the node in /sys/fs/bpf/tc/globals/:

Rolling Back
Occasionally, it may be necessary to undo the rollout because a step was missed or something went wrong
during the upgrade. To undo the rollout run:

helm history cilium --namespace=kube-system
helm rollback cilium [REVISION] --namespace=kube-system

This will revert the latest changes to the Cilium DaemonSet and return Cilium to the state it was in prior to
the upgrade.

docker exec cluster1 ls /sys/fs/bpf/tc/globals/

- acend gmbh

19 / 101

3. Hubble

3.1. Hubble
Before we start with the CNI functionality of Cilium and its security components we want to enable the
optional Hubble component (which is disabled by default). So we can take full advantage of its eBFP
observability capabilities.

Task 3.1.1: Install the Hubble CLI
Similar to the cilium CLI, the hubble CLI interfaces with Hubble and allows observing network traffic within
Kubernetes.

So let us install the hubble CLI.

Linux/Webshell Setup
Execute the following command to download the hubble CLI:

macOS Setup
Execute the following command to download the hubble CLI:

Hubble CLI
Now that we have the hubble CLI let’s have a look at some commands:

should show

hubble 0.11.1 compiled with go1.19.5 on linux/amd64

curl -L --remote-name-all https://github.com/cilium/hubble/releases/download/v0.11.1/hubble-linux-amd64.tar.gz{{,.sha256
sum}}
sha256sum --check hubble-linux-amd64.tar.gz.sha256sum
sudo tar xzvfC hubble-linux-amd64.tar.gz /usr/local/bin
rm hubble-linux-amd64.tar.gz{{,.sha256sum}}

curl -L --remote-name-all https://github.com/cilium/hubble/releases/download/v0.11.1/hubble-darwin-amd64.tar.gz{{,.sha25
6sum}}
shasum -a 256256 -c hubble-darwin-amd64.tar.gz.sha256sum
sudo tar xzvfC hubble-darwin-amd64.tar.gz /usr/local/bin
rm hubble-darwin-amd64.tar.gz{{,.sha256sum}}

hubble version

- acend gmbh

20 / 101

or

should show

Hubble is a utility to observe and inspect recent Cilium routed traffic in a cluster.

Usage:
 hubble [command]

Available Commands:
 completion Output shell completion code
 config Modify or view hubble config
 help Help about any command
 list List Hubble objects
 observe Observe flows of a Hubble server
 status Display status of Hubble server
 version Display detailed version information

Global Flags:
 --config string Optional config file (default "/home/user/.config/hubble/config.yaml")
 -D, --debug Enable debug messages

Get help:
 -h, --help Help for any command or subcommand

Use "hubble [command] --help" for more information about a command.

Task 3.1.2: Deploy a simple application
Before we enable Hubble in Cilium we want to make sure we have at least one application to observe.

Let’s have a look at the following resource definitions:

hubble help

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: frontend
 labelslabels::
 appapp:: frontend
specspec::
 replicasreplicas:: 11
 selectorselector::
 matchLabelsmatchLabels::
 appapp:: frontend
 templatetemplate::
 metadatametadata::
 labelslabels::
 appapp:: frontend
 specspec::
 containerscontainers::
 - namename:: frontend-container
 imageimage:: docker.io/byrnedo/alpine-curl:0.1.8
 imagePullPolicyimagePullPolicy:: IfNotPresent
 commandcommand:: [["/bin/ash",, "-c",, "sleep 1000000000"]]

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: not-frontend
 labelslabels::
 appapp:: not-frontend

- acend gmbh

21 / 101

The application consists of two client deployments (frontend and not-frontend) and one backend deployment
(backend). We are going to send requests from the frontend and not-frontend pods to the backend pod.

Create a file simple-app.yaml with the above content.

Deploy the app:

this gives you the following output:

 appapp:: not-frontend
specspec::
 replicasreplicas:: 11
 selectorselector::
 matchLabelsmatchLabels::
 appapp:: not-frontend
 templatetemplate::
 metadatametadata::
 labelslabels::
 appapp:: not-frontend
 specspec::
 containerscontainers::
 - namename:: not-frontend-container
 imageimage:: docker.io/byrnedo/alpine-curl:0.1.8
 imagePullPolicyimagePullPolicy:: IfNotPresent
 commandcommand:: [["/bin/ash",, "-c",, "sleep 1000000000"]]

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: backend
 labelslabels::
 appapp:: backend
specspec::
 replicasreplicas:: 11
 selectorselector::
 matchLabelsmatchLabels::
 appapp:: backend
 templatetemplate::
 metadatametadata::
 labelslabels::
 appapp:: backend
 specspec::
 containerscontainers::
 - namename:: backend-container
 envenv::
 - namename:: PORT
 valuevalue:: "8080"
 portsports::
 - containerPortcontainerPort:: 80808080
 imageimage:: docker.io/cilium/json-mock:1.2
 imagePullPolicyimagePullPolicy:: IfNotPresent

apiVersionapiVersion:: v1
kindkind:: Service
metadatametadata::
 namename:: backend
 labelslabels::
 appapp:: backend
specspec::
 typetype:: ClusterIP
 selectorselector::
 appapp:: backend
 portsports::
 - namename:: http
 portport:: 80808080

kubectl apply -f simple-app.yaml

- acend gmbh

22 / 101

deployment.apps/frontend created
deployment.apps/not-frontend created
deployment.apps/backend created
service/backend created

Verify with the following command that everything is up and running:

NAME READY STATUS RESTARTS AGE
pod/backend-65f7c794cc-b9j66 1/1 Running 0 3m17s
pod/frontend-76fbb99468-mbzcm 1/1 Running 0 3m17s
pod/not-frontend-8f467ccbd-cbks8 1/1 Running 0 3m17s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/backend ClusterIP 10.97.228.29 <none> 8080/TCP 3m17s
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/backend 1/1 1 1 3m17s
deployment.apps/frontend 1/1 1 1 3m17s
deployment.apps/not-frontend 1/1 1 1 3m17s

NAME DESIRED CURRENT READY AGE
replicaset.apps/backend-65f7c794cc 1 1 1 3m17s
replicaset.apps/frontend-76fbb99468 1 1 1 3m17s
replicaset.apps/not-frontend-8f467ccbd 1 1 1 3m17s

NAME ENDPOINT ID IDENTITY ID INGRESS ENFORCEMENT EGRESS ENFORC
EMENT VISIBILITY POLICY ENDPOINT STATE IPV4 IPV6
ciliumendpoint.cilium.io/backend-65f7c794cc-b9j66 144 67823
 ready 10.1.0.44
ciliumendpoint.cilium.io/frontend-76fbb99468-mbzcm 1898 76556
 ready 10.1.0.161
ciliumendpoint.cilium.io/not-frontend-8f467ccbd-cbks8 208 127021
 ready 10.1.0.128

NAME NAMESPACE AGE
ciliumidentity.cilium.io/127021 default 3m15s
ciliumidentity.cilium.io/67688 kube-system 41m
ciliumidentity.cilium.io/67823 default 3m15s
ciliumidentity.cilium.io/76556 default 3m15s

Let us make life a bit easier by storing the pods name into an environment variable so we can reuse it later
again:

Task 3.1.3: Enable Hubble in Cilium
When you install Cilium using Helm, then Hubble is already enabled. The value for this is hubble.enabled

which is set to true in the values.yaml of the Cilium Helm Chart. But we also want to enable Hubble Relay.
With the following Helm command you can enable Hubble with Hubble Relay:

kubectl get all,cep,ciliumid

export FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${FRONTEND}
export NOT_FRONTEND==$($(kubectl get pods -l app==not-frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${NOT_FRONTEND}

- acend gmbh

23 / 101

If you have installed Cilium with the cilium CLI then Hubble component is not enabled by default (nor is
Hubble Relay). You can enable Hubble using the following cilium CLI command:

cilium hubble enable

and then wait until Hubble is enabled:

� Found existing CA in secret cilium-ca
� Patching ConfigMap cilium-config to enable Hubble...
♻ ️ Restarted Cilium pods
� Waiting for Cilium to become ready before deploying other Hubble component(s)...
� Generating certificates for Relay...
� Deploying Relay from quay.io/cilium/hubble-relay:v1.12.10...
� Waiting for Hubble to be installed...
� Hubble was successfully enabled!

When you have a look at your running pods with kubectl get pod -A you should see a Pod with a name
starting with hubble-relay :

NAMESPACE NAME READY STATUS RESTARTS AGE
default backend-6f884b6495-v7bvt 1/1 Running 0 52s
default frontend-77d99ffc5d-lcsph 1/1 Running 0 52s
default not-frontend-7db9747986-snjwp 1/1 Running 0 52s
kube-system cilium-ksr7h 1/1 Running 0 9m16s
kube-system cilium-operator-6f5c6f768d-r2qgn 1/1 Running 0 9m17s
kube-system coredns-6d4b75cb6d-nf8wz 1/1 Running 0 22m
kube-system etcd-cluster1 1/1 Running 0 22m
kube-system hubble-relay-84b4ddb556-nr7c8 1/1 Running 0 10s
kube-system kube-apiserver-cluster1 1/1 Running 0 22m
kube-system kube-controller-manager-cluster1 1/1 Running 0 22m
kube-system kube-proxy-7l6qk 1/1 Running 0 22m
kube-system kube-scheduler-cluster1 1/1 Running 0 22m
kube-system storage-provisioner 1/1 Running 1 (21m ago) 22m

Cilium agents are restarting, and a new Hubble Relay pod is now present. We can wait for Cilium and
Hubble to be ready by running:

which should give you an output similar to this:

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set upgradeCompatibility==1.11 \
 --set kubeProxyReplacement==disabled \
 `# hubble and hubble relay variables:` \
 --set hubble.enabled==true \
 --set hubble.relay.enabled==true \
 --wait

kubectl get pod -A

cilium status --wait

- acend gmbh

24 / 101

 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: OK
 __/¯¯__/ ClusterMesh: disabled
 __/

DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Deployment hubble-relay Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium Running: 1
 cilium-operator Running: 1
 hubble-relay Running: 1
Cluster Pods: 9/9 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.11.2@sha256:ea677508010800214b0b5497055f38ed3bff57963fa23
99bcb1c69cf9476453a: 1
 cilium-operator quay.io/cilium/operator-generic:v1.11.2@sha256:b522279577d0d5f1ad7cadaacb7321d1b17
2d8ae8c8bc816e503c897b420cfe3: 1
 hubble-relay quay.io/cilium/hubble-relay:v1.11.2@sha256:306ce38354a0a892b0c175ae7013cf178a46b79
f51c52adb5465d87f14df0838: 1

Hubble is now enabled. We can now locally port-forward to the Hubble pod:

And then check Hubble status via the Hubble CLI (which uses the port-forwarding just opened):

Healthcheck (via localhost:4245): Ok
Current/Max Flows: 947/4095 (23.13%)
Flows/s: 3.84
Connected Nodes: 1/1

The Hubble CLI is now primed for observing network traffic within the cluster.

 cilium hubble port-forward&&

Note
The port-forwarding is needed as the hubble Kubernetes service is only a ClusterIP service and not exposed
outside of the cluster network. With the port-forwarding you can access the hubble service from your
localhost.

Note
Note the & after the command which puts the process in the background so we can continue working in the
shell.

hubble status

Note
If the nodes are not yet connected, give it some time and try again. There is a Certificate Authority thats
first needs to be fully loaded by the components.

- acend gmbh

25 / 101

Task 3.1.4: Observing flows with Hubble
We now want to use the hubble CLI to observe some network flows in our Kubernetes cluster. Let us have a
look at the following command:

which gives you a list of network flows:

Nov 23 14:49:03.030: 10.0.0.113:46274 <- kube-system/hubble-relay-f6d85866c-csthd:4245 to-stack FORWARDED (TCP Flags: A
CK, PSH)
Nov 23 14:49:03.030: 10.0.0.113:46274 -> kube-system/hubble-relay-f6d85866c-csthd:4245 to-endpoint FORWARDED (TCP Flags
: RST)
Nov 23 14:49:04.011: 10.0.0.113:44840 <- 10.0.0.114:4240 to-stack FORWARDED (TCP Flags: ACK)
Nov 23 14:49:04.011: 10.0.0.113:44840 -> 10.0.0.114:4240 to-endpoint FORWARDED (TCP Flags: ACK)
Nov 23 14:49:04.226: 10.0.0.113:32898 -> kube-system/coredns-558bd4d5db-xzvc9:8080 to-endpoint FORWARDED (TCP Flags: SY
N)
Nov 23 14:49:04.226: 10.0.0.113:32898 <- kube-system/coredns-558bd4d5db-xzvc9:8080 to-stack FORWARDED (TCP Flags: SYN,
ACK)
Nov 23 14:49:04.227: 10.0.0.113:32898 -> kube-system/coredns-558bd4d5db-xzvc9:8080 to-endpoint FORWARDED (TCP Flags: AC
K)
Nov 23 14:49:04.227: 10.0.0.113:32898 -> kube-system/coredns-558bd4d5db-xzvc9:8080 to-endpoint FORWARDED (TCP Flags: AC
K, PSH)
Nov 23 14:49:04.227: 10.0.0.113:32898 <- kube-system/coredns-558bd4d5db-xzvc9:8080 to-stack FORWARDED (TCP Flags: ACK,
PSH)
Nov 23 14:49:04.227: 10.0.0.113:32898 -> kube-system/coredns-558bd4d5db-xzvc9:8080 to-endpoint FORWARDED (TCP Flags: AC
K, FIN)
Nov 23 14:49:04.227: 10.0.0.113:32898 <- kube-system/coredns-558bd4d5db-xzvc9:8080 to-stack FORWARDED (TCP Flags: ACK,
FIN)
Nov 23 14:49:04.227: 10.0.0.113:32898 -> kube-system/coredns-558bd4d5db-xzvc9:8080 to-endpoint FORWARDED (TCP Flags: AC
K)
Nov 23 14:49:04.842: 10.0.0.113:34716 -> kube-system/coredns-558bd4d5db-xzvc9:8181 to-endpoint FORWARDED (TCP Flags: SY
N)
Nov 23 14:49:04.842: 10.0.0.113:34716 <- kube-system/coredns-558bd4d5db-xzvc9:8181 to-stack FORWARDED (TCP Flags: SYN,
ACK)
Nov 23 14:49:04.842: 10.0.0.113:34716 -> kube-system/coredns-558bd4d5db-xzvc9:8181 to-endpoint FORWARDED (TCP Flags: AC
K)
Nov 23 14:49:04.842: 10.0.0.113:34716 -> kube-system/coredns-558bd4d5db-xzvc9:8181 to-endpoint FORWARDED (TCP Flags: AC
K, PSH)
Nov 23 14:49:04.842: 10.0.0.113:34716 <- kube-system/coredns-558bd4d5db-xzvc9:8181 to-stack FORWARDED (TCP Flags: ACK,
PSH)
Nov 23 14:49:04.843: 10.0.0.113:34716 <- kube-system/coredns-558bd4d5db-xzvc9:8181 to-stack FORWARDED (TCP Flags: ACK,
FIN)
Nov 23 14:49:04.843: 10.0.0.113:34716 -> kube-system/coredns-558bd4d5db-xzvc9:8181 to-endpoint FORWARDED (TCP Flags: AC
K, FIN)
Nov 23 14:49:05.971: kube-system/hubble-relay-f6d85866c-csthd:40844 -> 192.168.49.2:4244 to-stack FORWARDED (TCP Flags:
 ACK, PSH)

with

you can observe and follow the currently active flows in your Kubernetes cluster. Stop the command with
CTRL+C .

Let us produce some traffic:

hubble observe

hubble observe -f

- acend gmbh

26 / 101

We can now use the hubble CLI to filter traffic we are interested in. Here are some examples to specifically
retrieve the network activity between our frontends and backend:

Note that Hubble tells us the action, here FORWARDED , but it could also be DROPPED . If you only want to see
DROPPED traffic. You can execute

For now this should only show some packets that have been sent to an already deleted pod. After we
configured NetworkPolicies we will see other dropped packets.

forfor i in {{1..10}};; dodo
 kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080
 kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080
donedone

hubble observe --to-pod backend
hubble observe --namespace default --protocol tcp --port 80808080

hubble observe --verdict DROPPED

- acend gmbh

27 / 101

3.2. Hubble UI
Not only does Hubble allow us to inspect flows from the command line, but it also allows us to see them in
real-time on a graphical service map via Hubble UI. Again, this also is an optional component that is
disabled by default.

Task 3.2.1: Enable the Hubble UI component
Enabling the optional Hubble UI component with Helm looks like this:

Take a look at the pods again to see what happened under the hood:

We see, there is again a new Pod running for the hubble-ui component.

NAMESPACE NAME READY STATUS RESTARTS AGE
default backend-6f884b6495-v7bvt 1/1 Running 0 94m
default frontend-77d99ffc5d-lcsph 1/1 Running 0 94m
default not-frontend-7db9747986-snjwp 1/1 Running 0 94m
kube-system cilium-ksr7h 1/1 Running 0 102m
kube-system cilium-operator-6f5c6f768d-r2qgn 1/1 Running 0 102m
kube-system coredns-6d4b75cb6d-nf8wz 1/1 Running 0 115m
kube-system etcd-cluster1 1/1 Running 0 115m
kube-system hubble-relay-84b4ddb556-nr7c8 1/1 Running 0 93m
kube-system hubble-ui-579fdfbc58-578g9 2/2 Running 0 19s
kube-system kube-apiserver-cluster1 1/1 Running 0 115m
kube-system kube-controller-manager-cluster1 1/1 Running 0 115m
kube-system kube-proxy-7l6qk 1/1 Running 0 115m
kube-system kube-scheduler-cluster1 1/1 Running 0 115m
kube-system storage-provisioner 1/1 Running 1 (115m ago) 115m

Cilium agents are restarting, and a new Hubble UI Pod is now present on top of the Hubble Relay pod. As
above, we can wait for Cilium and Hubble to be ready by running:

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set upgradeCompatibility==1.11 \
 --set kubeProxyReplacement==disabled \
 --set hubble.enabled==true \
 --set hubble.relay.enabled==true \
 `# enable hubble ui variable:` \
 --set hubble.ui.enabled==true \
 --wait

Note
When using the cilium CLI, you can execute the following command to enable the Hubble UI:

cilium hubble enable --ui

kubectl get pods -A

- acend gmbh

28 / 101

cilium status --wait
 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: OK
 __/¯¯__/ ClusterMesh: disabled
 __/

Deployment hubble-relay Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Deployment hubble-ui Desired: 1, Ready: 1/1, Available: 1/1
DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium Running: 1
 hubble-ui Running: 1
 hubble-relay Running: 1
 cilium-operator Running: 1
Cluster Pods: 6/6 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.12.1:: 1
 hubble-ui quay.io/cilium/hubble-ui:v0.9.1: 1
 hubble-ui quay.io/cilium/hubble-ui-backend:v0.9.1: 1
 hubble-relay quay.io/cilium/hubble-relay:v1.12.1: 1
 cilium-operator quay.io/cilium/operator-generic:v1.12.1: 1

And then check Hubble status:

To start Hubble UI execute

In our Webshell environment you can use the public IP of the VM to access Hubble. A simple way is to
execute

and copy the output in a new browser tab. If you are working locally, the browser should open
http://localhost:12000/ (open it manually if not).

We can then access the graphical service map by selecting our default Namespace:

cilium status --wait

hubble status

Note
Our earlier command kubectl port-forward should still be running (can be checked by running jobs or ps aux

| grep "port-forward"). If it does not, Hubble status will fail and we have to run it again:

cilium hubble port-forward&&
hubble status

kubectl port-forward -n kube-system --address ::,0.0.0.0 svc/hubble-ui 12000:80 &&

echo "http://$($(curl -s ifconfig.me)):12000"

- acend gmbh

29 / 101

If you see a spinning circle and the message “Waiting for service map data…” you can generate some
network activity again:

and then you should see a service map in the Hubble UI

and also a table with the already familiar flow output previously seen in the hubble observe command:

Hubble flows are displayed in real-time at the bottom, with a visualization of the namespace objects in the
center. Click on any flow, and click on any property from the right-side panel: notice that the filters at the

forfor i in {{1..10}};; dodo
 kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080
 kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080
donedone

- acend gmbh

30 / 101

top of the UI have been updated accordingly.

Let’s run a connectivity test again and see what happens in Hubble UI in the cilium-test namespace. In the
Hubble UI dropdown change to cilium-test . Since this test runs for a few minutes this could be a good time
to grab a ☕.

We can see that Hubble UI is not only capable of displaying flows within a Namespace, it also helps visualize
flows going in or out of it.

And there are also several visual options in the Hubble UI:

cilium connectivity test --test 'client-egress-to-echo-service-account' --test to-entities-world --test to-fqdns

- acend gmbh

31 / 101

Once done, clean up the connectivity test Namespace again:

kubectl delete ns cilium-test --wait==false

- acend gmbh

32 / 101

4. Metrics
With metrics displayed in Grafana or another UI, we can get a quick overview of our cluster state and its
traffic.

Both Cilium and Hubble can be configured to serve Prometheus metrics independently of each other. Cilium
metrics show us the state of Cilium itself, namely of the cilium-agent , cilium-envoy , and cilium-operator

processes. Hubble metrics on the other hand give us information about the traffic of our applications.

Task 4.1: Enable metrics
We start by enabling different metrics, for dropped and HTTP traffic we also want to have metrics specified
by pod.

Verify Cilium metrics
We now verify that the Cilium agent has different metric endpoints exposed and list some of them:

hubble port 9965
cilium agent port 9962
cilium envoy port 9095

You should see now an output like this.

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set upgradeCompatibility==1.11 \
 --set kubeProxyReplacement==disabled \
 --set hubble.enabled==true \
 --set hubble.relay.enabled==true \
 --set hubble.ui.enabled==true \
 `# enable metrics:` \
 --set prometheus.enabled==true \
 --set operator.prometheus.enabled==true \
 --set hubble.metrics.enabled=="{dns,drop:destinationContext=pod;sourceContext=pod,tcp,flow,port-distribution,icmp,http
:destinationContext=pod}"

CILIUM_AGENT_IP==$($(kubectl get pod -n kube-system -l k8s-app==cilium -o jsonpath=="{.items[0].status.hostIP}"))
kubectl run -n kube-system -it --env=="CILIUM_AGENT_IP=${CILIUM_AGENT_IP}" --rm curl --image==curlimages/curl -- sh

echo ${CILIUM_AGENT_IP}
curl -s ${CILIUM_AGENT_IP}:9962/metrics || grep cilium_nodes_all_num #show total number of cilium nodes
curl -s ${CILIUM_AGENT_IP}:9965/metrics || grep hubble_tcp_flags_total # show total number of TCP flags
exit

- acend gmbh

33 / 101

If you don't see a command prompt, try pressing enter.
echo ${CILIUM_AGENT_IP}
192.168.49.2
/ $ curl -s ${CILIUM_AGENT_IP}:9962/metrics | grep cilium_nodes_all_num #show total number of cilium nodes
HELP cilium_nodes_all_num Number of nodes managed
TYPE cilium_nodes_all_num gauge
cilium_nodes_all_num 1
/ $ curl -s ${CILIUM_AGENT_IP}:9965/metrics | grep hubble_tcp_flags_total # show total number of TCP flags
HELP hubble_tcp_flags_total TCP flag occurrences
TYPE hubble_tcp_flags_total counter
hubble_tcp_flags_total{family="IPv4",flag="FIN"} 2704
hubble_tcp_flags_total{family="IPv4",flag="RST"} 388
hubble_tcp_flags_total{family="IPv4",flag="SYN"} 1609
hubble_tcp_flags_total{family="IPv4",flag="SYN-ACK"} 1549

Task 4.2: Store and visualize metrics
To make sense of metrics, we store them in Prometheus and visualize them with Grafana dashboards.
Install both into cilium-monitoring Namespace to store and visualize Cilium and Hubble metrics.

Make sure Prometheus and Grafana pods are up and running before continuing with the next step.

you should see both Pods in state Running :

NAME READY STATUS RESTARTS AGE
grafana-6c7d4c9fd8-2xdp2 1/1 Running 0 41s
prometheus-55777f54d9-hkpkq 1/1 Running 0 41s

Generate some traffic for some minutes in the background

Note
The Cilium agent pods run as DaemonSet on the HostNetwork. This means you could also directly call a
node.

NODE==$($(kubectl get nodes --selector==kubernetes.io/role!==master -o jsonpath={={.items[[*]].status.addresses[[?\(@.type====\"In
ternalIP\"\)]].address}}))
curl -s $NODE:9962/metrics || grep cilium_nodes_all_num

Note
It is not yet possible to get metrics from Cilium Envoy (port 9095). Envoy only starts on a node if there is at
least one Pod with a layer 7 networkpolicy.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.12/examples/kubernetes/addons/prometheus/monitoring
-example.yaml

kubectl -n cilium-monitoring get pod

- acend gmbh

34 / 101

In a second terminal access Grafana with kubectl proxy-forward (for those in the webshell: don’t forget to
connect to the VM first)

Now open a new tab in your browser and go to URL from the output (for those working on their
localmachine use http://localhost:3000/dashboards). In Grafana use the left side menu: Dashboard , click on
Manage , then click on Hubble . For a better view, you can change the timespan to the last 5 minutes.

Verify that you see the generated traffic under Network, Forwarded vs Dropped Traffic. Not all graphs will
have data available. This is because we have not yet used network policies or any layer 7 components. This
will be done in the later chapters.

Change to the Cilium Metrics Dashboard. Here we see information about Cilium itself. Again not all graphs
contain data as we have not used all features of Cilium yet.

Try to find the number of IPs allocated and the number of Cilium endpoints.

Leave the Grafana Tab open, we will use it in the later chapters.

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
i==0;; whilewhile [[$i -le 300300]];; dodo kubectl exec -ti ${FRONTEND} -- curl -Is backend:8080;; sleep 1;; ((((i++))));; donedone &&

kubectl -n cilium-monitoring port-forward service/grafana --address ::,0.0.0.0 3000:3000 &&
echo "http://$($(curl -s ifconfig.me)):3000/dashboards"

- acend gmbh

35 / 101

5. Troubleshooting
For more details on Troubleshooting, have a look into Cilium’s Troubleshooting Documentation .

Component & Cluster Health
An initial overview of Cilium can be retrieved by listing all pods to verify whether all pods have the status
Running :

In our single node cluster there is only one cilium pod running:

NAME READY STATUS RESTARTS AGE
cilium-ksr7h 1/1 Running 0 12m16

If Cilium encounters a problem that it cannot recover from, it will automatically report the failure state via
cilium status which is regularly queried by the Kubernetes liveness probe to automatically restart Cilium

pods. If a Cilium Pod is in state CrashLoopBackoff then this indicates a permanent failure scenario.

If a particular Cilium Pod is not in a running state, the status and health of the agent on that node can be
retrieved by running cilium status in the context of that pod:

The output looks similar to this:

Defaulted container "cilium-agent" out of: cilium-agent, mount-cgroup (init), apply-sysctl-overwrites (init), mount-bpf
-fs (init), clean-cilium-state (init)
KVStore: Ok Disabled
Kubernetes: Ok 1.24 (v1.24.3) [linux/amd64]
Kubernetes APIs: ["cilium/v2::CiliumClusterwideNetworkPolicy", "cilium/v2::CiliumEndpoint", "cilium/v2::CiliumN
etworkPolicy", "cilium/v2::CiliumNode", "core/v1::Namespace", "core/v1::Node", "core/v1::Pods", "core/v1::Service", "di
scovery/v1::EndpointSlice", "networking.k8s.io/v1::NetworkPolicy"]
KubeProxyReplacement: Disabled
Host firewall: Disabled
CNI Chaining: none
Cilium: Ok 1.12.5 (v1.12.5-701acde)
NodeMonitor: Listening for events on 8 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
IPAM: IPv4: 10/254 allocated from 10.1.0.0/24,
ClusterMesh: 0/0 clusters ready, 0 global-services
BandwidthManager: Disabled
Host Routing: Legacy
Masquerading: IPTables [IPv4: Enabled, IPv6: Disabled]
Controller Status: 50/50 healthy
Proxy Status: OK, ip 10.1.0.182, 0 redirects active on ports 10000-20000
Global Identity Range: min 256, max 65535
Hubble: Ok Current/Max Flows: 4095/4095 (100.00%), Flows/s: 8.71 Metrics: Ok
Encryption: Disabled
Cluster health: 1/1 reachable (2023-01-26T08:23:50Z)

More detailed information about the status of Cilium can be inspected with:

kubectl -n kube-system get pods -l k8s-app==cilium

kubectl -n kube-system exec ds/cilium -- cilium status

- acend gmbh

36 / 101

https://docs.cilium.io/en/stable/operations/troubleshooting/

Verbose output includes detailed IPAM state (allocated addresses), Cilium controller status, and details of
the Proxy status.

Logs
To retrieve log files of a cilium pod, run:

The <pod-name> can be determined with the following command and by selecting the name of one of the
pods:

If the Cilium Pod was already restarted due to the liveness problem after encountering an issue, it can be
useful to retrieve the logs of the Pod previous to the last restart:

Policy Troubleshooting - Ensure Pod is managed by
Cilium
A potential cause for policy enforcement not functioning as expected is that the networking of the Pod
selected by the policy is not being managed by Cilium. The following situations result in unmanaged pods:

The Pod is running in host networking and will use the host’s IP address directly. Such pods have full
network connectivity but Cilium will not provide security policy enforcement for such pods.
The Pod was started before Cilium was deployed. Cilium only manages pods that have been deployed
after Cilium itself was started. Cilium will not provide security policy enforcement for such pods.

If Pod networking is not managed by Cilium, ingress and egress policy rules selecting the respective pods
will not be applied. See the section Network Policy for more details.

For a quick assessment of whether any pods are not managed by Cilium, the Cilium CLI will print the
number of managed pods. If this prints that all of the pods are managed by Cilium, then there is no
problem:

kubectl -n kube-system exec ds/cilium -- cilium status --verbose

kubectl -n kube-system logs --timestamps <pod-name>

kubectl -n kube-system get pods -l k8s-app==cilium

kubectl -n kube-system logs --timestamps -p <pod-name>

cilium status

- acend gmbh

37 / 101

 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: OK
 __/¯¯__/ ClusterMesh: disabled
 __/

Deployment cilium-operator Desired: 2, Ready: 2/2, Available: 2/2
Deployment hubble-relay Desired: 1, Ready: 1/1, Available: 1/1
Deployment hubble-ui Desired: 1, Ready: 1/1, Available: 1/1
DaemonSet cilium Desired: 2, Ready: 2/2, Available: 2/2
Containers: cilium-operator Running: 2
 hubble-relay Running: 1
 hubble-ui Running: 1
 cilium Running: 2
Cluster Pods: 5/5 managed by Cilium

You can run the following script to list the pods which are not managed by Cilium:

Reporting a problem - Automatic log & state
collection
Before you report a problem, make sure to retrieve the necessary information from your cluster before the
failure state is lost.

Execute the cilium sysdump command to collect troubleshooting information from your Kubernetes cluster:

Note that by default cilium sysdump will attempt to collect as many logs as possible for all the nodes in the
cluster. If your cluster size is above 20 nodes, consider setting the following options to limit the size of the
sysdump. This is not required, but is useful for those who have a constraint on bandwidth or upload size.

set the --node-list option to pick only a few nodes in case the cluster has many of them.
set the --logs-since-time option to go back in time to when the issues started.
set the --logs-limit-bytes option to limit the size of the log files (note: passed onto kubectl logs; does not
apply to entire collection archive). Ideally, a sysdump that has a full history of select nodes, rather than
a brief history of all the nodes, would be preferred (by using --node-list). The second recommended way
would be to use --logs-since-time if you are able to narrow down when the issues started. Lastly, if the
Cilium agent and Operator logs are too large, consider --logs-limit-bytes .

Use --help to see more options:

curl -sLO https://raw.githubusercontent.com/cilium/cilium/master/contrib/k8s/k8s-unmanaged.sh
chmod +x k8s-unmanaged.sh
./k8s-unmanaged.sh

Note
It’s ok if you don’t see any Pods listed with the above command. We don’t have any unmanaged Pods in
our setup.

cilium sysdump

- acend gmbh

38 / 101

cilium sysdump --help

- acend gmbh

39 / 101

6. Network Policies

Network Policies
One CNI function is the ability to enforce network policies and implement an in-cluster zero-trust container
strategy. Network policies are a default Kubernetes object for controlling network traffic, but a CNI such as
Cilium is required to enforce them. We will demonstrate traffic blocking with our simple app.

Task 6.1: Cilium Endpoints and Identities
Each Pod from our simple application is represented in Cilium as an Endpoint . We can use the cilium tool
inside a Cilium Pod to list them.

First get all Cilium pods with:

NAME READY STATUS RESTARTS AGE
cilium-ksr7h 1/1 Running 0 13m16

and then run:

Cilium will match these endpoints with labels and generate identities as a result. The identity is what is used
to enforce basic connectivity between endpoints. We can see this change of identity:

Note
If you are not yet familiar with Kubernetes Network Policies we suggest going to the Kubernetes
Documentation

kubectl -n kube-system get pods -l k8s-app==cilium

kubectl -n kube-system exec <podname> -- cilium endpoint list

Note
Or we just execute the first Pod of the DaemonSet:

kubectl -n kube-system exec ds/cilium -- cilium endpoint list

kubectl run test-identity --image==nginx
sleep 55 # just wait for the pod to get ready
kubectl -n kube-system exec daemonset/cilium -- cilium endpoint list || grep -E -B4 -A1 'IDENTITY|run'
kubectl label pod test-identity this==that
sleep 55 # give some time to process
kubectl -n kube-system exec daemonset/cilium -- cilium endpoint list || grep -E -B4 -A1 'IDENTITY|run'
kubectl delete pod test-identity

- acend gmbh

40 / 101

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.cilium.io/en/stable/gettingstarted/terminology/#endpoint

We see that the number for this Pod in the column IDENTITY has changed after we added another label. If
you run endpoint list right after pod-labeling you might also see waiting-for-identity as the status of the
endpoint.

Task 6.2: Verify connectivity
Make sure your FRONTEND and NOT_FRONTEND environment variable are still set. Otherwise set them again:

Now we generate some traffic as a baseline test.

and

This will execute a simple curl call from the frontend and not-frondend application to the backend application:

Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 12:50:44 GMT
Connection: keep-alive

Not Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 12:50:44 GMT
Connection: keep-alive

and we see, both applications can connect to the backend application.

Until now ingress and egress policy enforcement are still disabled on all of our pods because no network

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${FRONTEND}
NOT_FRONTEND==$($(kubectl get pods -l app==not-frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${NOT_FRONTEND}

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

41 / 101

policy has been imported yet selecting any of the pods. Let us change this.

Task 6.3: Deny traffic with a Network Policy
We block traffic by applying a network policy. Create a file backend-ingress-deny.yaml with the following
content:

The policy will deny all ingress traffic as it is of type Ingress but specifies no allow rule, and will be applied
to all pods with the app=backend label thanks to the podSelector.

Ok, then let’s create the policy with:

and you can verify the created NetworkPolicy with:

which gives you an output similar to this:

NAME POD-SELECTOR AGE
backend-ingress-deny app=backend 2s

Task 6.4: Verify connectivity again
We can now execute the connectivity check again:

and

kindkind:: NetworkPolicy
apiVersionapiVersion:: networking.k8s.io/v1
metadatametadata::
 namename:: backend-ingress-deny
specspec::
 podSelectorpodSelector::
 matchLabelsmatchLabels::
 appapp:: backend
 policyTypespolicyTypes::
 - Ingress

kubectl apply -f backend-ingress-deny.yaml

kubectl get netpol

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

42 / 101

but this time you see that the frontend and not-frontend application cannot connect anymore to the backend :

Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28
Not Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

The network policy correctly switched the default ingress behavior from default allow to default deny. We
can also check this in Grafana.

In Grafana browse to the dashboard Hubble . You should see now data in more graphs. Check the graphs Drop

Reason , Forwarded vs Dropped . In Top 10 Source Pods with Denied Packets you should find the name of the pods from
our simple application.

Let’s now selectively re-allow traffic again, but only from frontend to backend.

Task 6.5: Allow traffic from frontend to backend
We can do it by crafting a new network policy manually, but we can also use the Network Policy Editor to
help us out:

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

Note
Note: our earlier Grafana port-forward should still be running (can be checked by running jobs or ps aux |

grep "grafana"). If it does not open the URL from the command output below (or
http://localhost:3000/dashboards with a local setup).

kubectl -n cilium-monitoring port-forward service/grafana --address 0.0.0.0 --address :: 3000:3000 &&
echo "http://$($(curl -s ifconfig.me)):3000/dashboards"

- acend gmbh

43 / 101

Above you see our original policy, we create an new one with the editor now.

Go to https://networkpolicy.io/editor .
Name the network policy to backend-allow-ingress-frontend (using the Edit button in the center).
add app=backend as Pod Selector
Set Ingress to default deny

On the ingress side, add app=frontend as podSelector for pods in the same Namespace.

- acend gmbh

44 / 101

https://networkpolicy.io/editor

Inspect the ingress flow colors: the policy will deny all ingress traffic to pods labeled app=backend , except
for traffic coming from pods labeled app=frontend .

Copy the policy YAML into a file named backend-allow-ingress-frontend.yaml . Make sure to use the
Networkpolicy and not the CiliumNetworkPolicy .

The file should look like this:

- acend gmbh

45 / 101

Apply the new policy:

and then execute the connectivity test again:

and

This time, the frontend application is able to connect to the backend but the not-frontend application still
cannot connect to the backend :

Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 13:08:27 GMT
Connection: keep-alive

Not Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

Note that this is working despite the fact we did not delete the previous backend-ingress-deny policy:

apiVersionapiVersion:: networking.k8s.io/v1
kindkind:: NetworkPolicy
metadatametadata::
 namename:: "backend-allow-ingress-frontend"
specspec::
 podSelectorpodSelector::
 matchLabelsmatchLabels::
 appapp:: backend
 policyTypespolicyTypes::
 - Ingress
 ingressingress::
 - fromfrom::
 - podSelectorpodSelector::
 matchLabelsmatchLabels::
 appapp:: frontend

kubectl apply -f backend-allow-ingress-frontend.yaml

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

46 / 101

NAME POD-SELECTOR AGE
backend-allow-ingress-frontend app=backend 2m7s
backend-ingress-deny app=backend 12m

Network policies are additive. Just like with firewalls, it is thus a good idea to have default DENY policies and
then add more specific ALLOW policies as needed.

We can verify our connection being blocked with Hubble.

Generate some traffic.

With hubble observe you can now check the packet being dropped as well as the reason why (Policy denied).

And the output should look like this:

Task 6.6: Inspecting the Cilium endpoints again
We can now check the Cilium endpoints again.

kubectl get netpol

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

Note
Our earlier port-forward should still be running (can be checked by running jobs or ps aux | grep "port-forward

svc/hubble-relay"). If it does not, Hubble status will fail and we have to run it again:

kubectl -n kube-system port-forward svc/hubble-relay 4245:80 &&
hubble status

hubble observe --from-label app==not-frontend --to-label app==backend

Jan 2626 09:07:03.396: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) policy-verdict:none INGRESS DENIED ((TCP Flags: SYN))
Jan 2626 09:07:03.396: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) Policy denied DROPPED ((TCP Flags: SYN))
Jan 2626 09:07:04.401: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) policy-verdict:none INGRESS DENIED ((TCP Flags: SYN))
Jan 2626 09:07:04.401: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) Policy denied DROPPED ((TCP Flags: SYN))
Jan 2626 09:07:06.418: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) policy-verdict:none INGRESS DENIED ((TCP Flags: SYN))
Jan 2626 09:07:06.418: default/not-frontend-7db9747986-gktg6:45002 ((ID:84671)) <> default/backend-6f884b6495-69bbh:8080 ((I
D:68421)) Policy denied DROPPED ((TCP Flags: SYN))

- acend gmbh

47 / 101

And now we see that the pods with the label app=backend now have ingress policy enforcement enabled.

ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value])
 IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
248 Enabled Disabled 68421 k8s:app=backend
 10.1.0.1 ready
 k8s:io.cilium.k8s.namespace.labels.kubernetes.io/metadata.na
me=default
 k8s:io.cilium.k8s.policy.cluster=cluster1

 k8s:io.cilium.k8s.policy.serviceaccount=default

 k8s:io.kubernetes.pod.namespace=default

kubectl -n kube-system exec -it ds/cilium -- cilium endpoint list

- acend gmbh

48 / 101

7. Cilium Network Policies

Cilium Network Policies
On top of the default Kubernetes network policies, Cilium provides extended policy enforcement capabilities
(such as Identity-aware, HTTP-aware and DNS-aware) via Cilium Network Policies.

7.1. DNS-aware Network Policy

Task 7.1.1: Create and use a DNS-aware Network
Policy
In this task, we want to keep our backend pods from reaching anything except FQDN kubernetes.io.

First we store the backend Pod name into an environment variable:

and then let us check if we can reach https://kubernetes.io and https://cilium.io :

Call to https://kubernetes.io
HTTP/2 200
Call to https://cilium.io
HTTP/2 200

Again, in Kubernetes, all traffic is allowed by default, and since we did not apply any Egress network policy
for now, connections from the backend pods are not blocked.

Let us have a look at the following CiliumNetworkPolicy :

BACKEND==$($(kubectl get pods -l app==backend -o jsonpath=='{.items[0].metadata.name}'))
echo ${BACKEND}

kubectl exec -ti ${BACKEND} -- curl -Ik --connect-timeout 55 https://kubernetes.io || head -1

kubectl exec -ti ${BACKEND} -- curl -Ik --connect-timeout 55 https://cilium.io || head -1

- acend gmbh

49 / 101

The policy will deny all egress traffic from pods labeled app=backend except when traffic is destined for
kubernetes.io or is a DNS request (necessary for resolving kubernetes.io from coredns). In the policy editor

this looks like this:

Create the file backend-egress-allow-fqdn.yaml with the above content and apply the network policy:

and check if the CiliumNetworkPolicy was created:

kindkind:: CiliumNetworkPolicy
apiVersionapiVersion:: cilium.io/v2
metadatametadata::
 namename:: backend-egress-allow-fqdn
specspec::
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 appapp:: backend
 egressegress::
 - toEndpointstoEndpoints::
 - matchLabelsmatchLabels::
 "k8s:io.kubernetes.pod.namespace": "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": "k8s:k8s-app": kube-dns
 toPortstoPorts::
 - portsports::
 - portport:: "53"
 protocolprotocol:: ANY
 rulesrules::
 dnsdns::
 - matchPatternmatchPattern:: "*"
 - toFQDNstoFQDNs::
 - matchNamematchName:: kubernetes.io

kubectl apply -f backend-egress-allow-fqdn.yaml

kubectl get cnp

- acend gmbh

50 / 101

NAME AGE
backend-egress-allow-fqdn 2s

Note the usage of cnp (standing for CiliumNetworkPolicy) instead of the default netpol since we are using
custom Cilium resources.

And check that the traffic is now only authorized when destined for kubernetes.io :

Call to https://kubernetes.io
HTTP/2 200
Call to https://cilium.io
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

With the ingress and egress policies in place on app=backend pods, we have implemented a simple zero-trust
model to all traffic to and from our backend. In a real-world scenario, cluster administrators may leverage
network policies and overlay them at all levels and for all kinds of traffic.

Task 7.1.2: Cleanup
To not mess up the proceeding labs we are going to delete the CiliumNetworkPolicy again and therefore allow
all egress traffic again:

kubectl exec -ti ${BACKEND} -- curl -Ik --connect-timeout 55 https://kubernetes.io || head -1

kubectl exec -ti ${BACKEND} -- curl -Ik --connect-timeout 55 https://cilium.io || head -1

Note
You can now check the Hubble Metrics dashboard in Grafana again. The graphs under DNS should soon show
some data as well. This is because with a Layer 7 Policy we have enabled the Envoy in Cilium Agent.

kubectl delete cnp backend-egress-allow-fqdn

- acend gmbh

51 / 101

7.2. HTTP-aware L7 Policy

Task 7.2.1: Deploy a new Demo Application
In this Star Wars inspired example, there are three microservices applications: deathstar, tiefighter, and
xwing. The deathstar runs an HTTP webservice on port 80, which is exposed as a Kubernetes Service to load
balance requests to deathstar across two Pod replicas. The deathstar service provides landing services to
the empire’s spaceships so that they can request a landing port. The tiefighter Pod represents a landing-
request client service on a typical empire ship and xwing represents a similar service on an alliance ship.
They exist so that we can test different security policies for access control to deathstar landing services.

The file sw-app.yaml contains a Kubernetes Deployment for each of the three services. Each deployment is
identified using the Kubernetes labels (org=empire , class=deathstar), (org=empire , class=tiefighter), and
(org=alliance , class=xwing). It also includes a deathstar-service, which load balances traffic to all pods with
labels org=empire and class=deathstar .

- acend gmbh

52 / 101

Create and apply the file with:

apiVersionapiVersion:: v1
kindkind:: Service
metadatametadata::
 namename:: deathstar
 labelslabels::
 app.kubernetes.io/nameapp.kubernetes.io/name:: deathstar
specspec::
 typetype:: ClusterIP
 portsports::
 - portport:: 8080
 selectorselector::
 orgorg:: empire
 classclass:: deathstar

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: deathstar
 labelslabels::
 app.kubernetes.io/nameapp.kubernetes.io/name:: deathstar
specspec::
 replicasreplicas:: 22
 selectorselector::
 matchLabelsmatchLabels::
 orgorg:: empire
 classclass:: deathstar
 templatetemplate::
 metadatametadata::
 labelslabels::
 orgorg:: empire
 classclass:: deathstar
 app.kubernetes.io/nameapp.kubernetes.io/name:: deathstar
 specspec::
 containerscontainers::
 - namename:: deathstar
 imageimage:: docker.io/cilium/starwars

apiVersionapiVersion:: v1
kindkind:: Pod
metadatametadata::
 namename:: tiefighter
 labelslabels::
 orgorg:: empire
 classclass:: tiefighter
 app.kubernetes.io/nameapp.kubernetes.io/name:: tiefighter
specspec::
 containerscontainers::
 - namename:: spaceship
 imageimage:: docker.io/tgraf/netperf

apiVersionapiVersion:: v1
kindkind:: Pod
metadatametadata::
 namename:: xwing
 labelslabels::
 app.kubernetes.io/nameapp.kubernetes.io/name:: xwing
 orgorg:: alliance
 classclass:: xwing
specspec::
 containerscontainers::
 - namename:: spaceship
 imageimage:: docker.io/tgraf/netperf

kubectl apply -f sw-app.yaml

- acend gmbh

53 / 101

And as we have already some Network Policies in our Namespace the default ingress behavior is default
deny. Therefore we need a new Network Policy to access services on deathstar :

Create a file cnp.yaml with the following content:

Apply the CiliumNetworkPolicy with:

With this policy, our tiefighter has access to the deathstar application. You can verify this with:

Ship landed

but the xwing does not have access:

command terminated with exit code 28

Task 7.2.2: Apply and Test HTTP-aware L7 Policy
In the simple scenario above, it was sufficient to either give tiefighter / xwing full access to deathstar’s API
or no access at all. But to provide the strongest security (i.e., enforce least-privilege isolation) between
microservices, each service that calls deathstar’s API should be limited to making only the set of HTTP
requests it requires for legitimate operation.

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: "rule1"
specspec::
 descriptiondescription:: "L3-L4 policy to restrict deathstar access to empire ships only"
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 orgorg:: empire
 classclass:: deathstar
 ingressingress::
 - fromEndpointsfromEndpoints::
 - matchLabelsmatchLabels::
 orgorg:: empire
 toPortstoPorts::
 - portsports::
 - portport:: "80"
 protocolprotocol:: TCP

kubectl apply -f cnp.yaml

kubectl exec tiefighter -- curl -m 22 -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing

kubectl exec xwing -- curl -m 22 -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing

- acend gmbh

54 / 101

For example, consider that the deathstar service exposes some maintenance APIs that should not be called
by random empire ships. To see this run:

Panic: deathstar exploded

goroutine 1 [running]:
main.HandleGarbage(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
 /code/src/github.com/empire/deathstar/
 temp/main.go:9 +0x64
main.main()
 /code/src/github.com/empire/deathstar/
 temp/main.go:5 +0x85

Cilium is capable of enforcing HTTP-layer (i.e., L7) policies to limit what URLs the tiefighter is allowed to
reach. Here is an example policy file that extends our original policy by limiting tiefighter to making only a
POST /v1/request-landing API call, but disallowing all other calls (including PUT /v1/exhaust-port).

Create a file cnp-l7.yaml with the following content:

Update the existing rule to apply the L7-aware policy to protect deathstar using with:

We can now re-run the same test as above, but we will see a different outcome:

kubectl exec tiefighter -- curl -s -XPUT deathstar.default.svc.cluster.local/v1/exhaust-port

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: "rule1"
specspec::
 descriptiondescription:: "L7 policy to restrict access to specific HTTP call"
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 orgorg:: empire
 classclass:: deathstar
 ingressingress::
 - fromEndpointsfromEndpoints::
 - matchLabelsmatchLabels::
 orgorg:: empire
 toPortstoPorts::
 - portsports::
 - portport:: "80"
 protocolprotocol:: TCP
 rulesrules::
 httphttp::
 - methodmethod:: "POST"
 pathpath:: "/v1/request-landing"

kubectl apply -f cnp-l7.yaml

kubectl exec tiefighter -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing

- acend gmbh

55 / 101

Ship landed

and

Access denied

kubectl exec tiefighter -- curl -s -XPUT deathstar.default.svc.cluster.local/v1/exhaust-port

Note
You can now check the Hubble dashboard in Grafana again. The graphs under HTTP should soon show some
data as well. To generate more data just request-landing on deathstar a few times with tiefighter

- acend gmbh

56 / 101

8. Transparent Encryption

Host traffic/endpoint traffic encryption
To secure communication inside a Kubernetes cluster Cilium supports transparent encryption of traffic
between Cilium-managed endpoints either using IPsec or WireGuard® .

Task 8.1: Increase cluster size
By default Minikube creates single-node clusters. Add a second node to the cluster:

Task 8.2: Move frontend app to a different node
To see traffic between nodes, we move the frontend pod from Chapter 3 to the newly created node:

Create a file patch.yaml with the follwing content_

You can patch the frontend deployment now:

We should see the frontend now running on the new node cluster1-m02 :

minikube -p cluster1 node add

specspec::
 templatetemplate::
 specspec::
 nodeSelectornodeSelector::
 kubernetes.io/hostnamekubernetes.io/hostname:: cluster1-m02

kubectl patch deployments.apps frontend --type merge --patch-file patch.yaml

kubectl get pods -o wide

- acend gmbh

57 / 101

https://www.wireguard.com/

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE R
EADINESS GATES
backend-65f7c794cc-hh6pw 1/1 Running 0 22m 10.1.0.39 cluster1 <none> <
none>
deathstar-6c94dcc57b-6chpk 1/1 Running 1 (10m ago) 11m 10.1.0.207 cluster1 <none> <
none>
deathstar-6c94dcc57b-vtt8b 1/1 Running 0 11m 10.1.0.220 cluster1 <none> <
none>
frontend-6db4b77ff6-kznfl 1/1 Running 0 35s 10.1.1.7 cluster1-m02 <none> <
none>
not-frontend-8f467ccbd-4jl6z 1/1 Running 0 22m 10.1.0.115 cluster1 <none> <
none>
tiefighter 1/1 Running 0 11m 10.1.0.185 cluster1 <none> <
none>
xwing 1/1 Running 0 11m 10.1.0.205 cluster1 <none> <
none>

Task 8.3: Sniff traffic between nodes
To check if we see unencrypted traffic between nodes we will use tcpdump. Let us filter on the host interfce
for all packets containing the string password :

In a second terminal we will call our backend service with a password. For those using the Webshell a
second Terminal can be opened using the menu Terminal then Split Terminal , also don’t forget to ssh into the
VM again. Now in this second terminal run:

You should now see our string password sniffed in the network traffic. Hit Ctrl+C to stop sniffing but keep the
second terminal open.

Task 8.4: Enable node traffic encryption with
WireGuard
Enabling WireGuard based encryption with Helm is simple:

CILIUM_AGENT==$($(kubectl get pod -n kube-system -l k8s-app==cilium -o jsonpath=="{.items[0].metadata.name}"))
kubectl debug -n kube-system -i ${CILIUM_AGENT} --image==nicolaka/netshoot -- tcpdump -ni eth0 -vv || grep password

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
forfor i in {{1..10}};; dodo
 kubectl exec -ti ${FRONTEND} -- curl -Is backend:8080?password==secret
donedone

- acend gmbh

58 / 101

Afterwards restart the Cilium DaemonSet:

Currently, L7 policy enforcement and visibility is not supported with WireGuard, this is why we have to
disable it.

Task 8.5: Verify encryption is working
Verify the number of peers in encryption is 1 (this can take a while, the number is sum of nodes - 1)

You should see something similar to this (in this example we have a two-node cluster):

Encryption: Wireguard [cilium_wg0 (Pubkey: XbTJd5Gnp7F8cG2Ymj6q11dBx8OtP1J5ZOAhswPiYAc=, Port: 51871,
 Peers: 1)]

We now check if the traffic is really encrypted, we start sniffing again:

Now in the other terminal generate traffic:

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set upgradeCompatibility==1.11 \
 --set kubeProxyReplacement==disabled \
 --set hubble.enabled==true \
 --set hubble.relay.enabled==true \
 --set hubble.ui.enabled==true \
 --set prometheus.enabled==true \
 --set operator.prometheus.enabled==true \
 --set hubble.enabled==true \
 --set hubble.metrics.enabled=="{dns,drop:destinationContext=pod;sourceContext=pod,tcp,flow,port-distribution,icmp,http
:destinationContext=pod}" \
 `# enable wireguard:` \
 --set l7Proxy==false \
 --set encryption.enabled==true \
 --set encryption.type==wireguard \
 --set encryption.wireguard.userspaceFallback==true \
 --wait

kubectl -n kube-system rollout restart ds cilium

kubectl -n kube-system exec -ti ds/cilium -- cilium status || grep Encryption

CILIUM_AGENT==$($(kubectl get pod -n kube-system -l k8s-app==cilium -o jsonpath=="{.items[0].metadata.name}"))
kubectl debug -n kube-system -i ${CILIUM_AGENT} --image==nicolaka/netshoot -- tcpdump -ni eth0 -vv || grep password

- acend gmbh

59 / 101

https://github.com/cilium/cilium/issues/15462

As you should see the traffic is encrypted now and we can’t find our string anymore in plaintext on eth0. To
sniff the traffic before it is encrypted replace the interface eth0 with the WireGuard interface cilium_wg0 .

Hit Ctrl+C to stop sniffing. You can close the second terminal with exit .

Task 8.6: CleanUp
To not mess up the next ClusterMesh Lab we are going to disable WireGuard encryption again:

and then restart the Cilium Daemonset:

Verify that it is disabled again:

Encryption: Disabled

remove the second node and move backend back to first node

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
forfor i in {{1..10}};; dodo
 kubectl exec -ti ${FRONTEND} -- curl -Is backend:8080?password==secret
donedone

helm upgrade -i cilium cilium/cilium --version 1.12.10\
 --namespace kube-system \
 --reuse-values \
 --set l7Proxy==true \
 --set encryption.enabled==false \
 --wait

kubectl -n kube-system rollout restart ds cilium

kubectl -n kube-system exec -ti ds/cilium -- cilium status || grep Encryption

kubectl delete -f simple-app.yaml
minikube node delete cluster1-m02 --profile cluster1
kubectl apply -f simple-app.yaml

- acend gmbh

60 / 101

9. Cluster Mesh

9.1. Enable Cluster Mesh

Task 9.1.1: Create a second Kubernetes Cluster
To create a Cluster Mesh, we need a second Kubernetes cluster. For the Cluster Mesh to work, the PodCIDR
ranges in all clusters and nodes must be non-conflicting and have unique IP addresses. The nodes in all
clusters must have IP connectivity between each other and the network between the clusters must allow
inter-cluster communication.

To start a second cluster run the following command:

As Minikube with the Docker driver uses separated Docker networks, we need to make sure that your
system forwards traffic between the two networks. To enable forwarding by default execute:

Then install Cilium using Helm. Remember, we need a different PodCIDR for the second cluster, therefore
while installing Cilium, we have to change this config:

Then wait until the cluster and Cilium is ready.

Note
The exact ports are documented in the Firewall Rules section.

minikube start --network-plugin==cni --cni==false --kubernetes-version==1.24.3 -p cluster2

sudo iptables -I DOCKER-USER -j ACCEPT

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.2.0.0/16}} \
 --set cluster.name==cluster2 \
 --set cluster.id==22 \
 --set operator.replicas==11 \
 --set kubeProxyReplacement==disabled \
 --wait

cilium status --wait

- acend gmbh

61 / 101

https://docs.cilium.io/en/v1.12/operations/system_requirements/#firewall-requirements

 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: disabled
 __/¯¯__/ ClusterMesh: disabled
 __/

DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium-operator Running: 1
 cilium Running: 1
Cluster Pods: 1/1 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.12.10: 1
 cilium-operator quay.io/cilium/operator-generic:v1.12.10: 1

You can verify the correct PodCIDR using:

Have a look at the coredns- Pod and verify that it’s IP is from your defined 10.2.0.0/16 range.

NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
 NODE READINESS GATES
kube-system cilium-operator-776958f5bb-m5hww 1/1 Running 0 29s 192.168.58.2 cluster2 <none>
 <none>
kube-system cilium-qg9xj 1/1 Running 0 29s 192.168.58.2 cluster2 <none>
 <none>
kube-system coredns-558bd4d5db-z6cxh 1/1 Running 0 38s 10.2.0.240 cluster2 <none>
 <none>
kube-system etcd-cluster2 1/1 Running 0 44s 192.168.58.2 cluster2 <none>
 <none>
kube-system kube-apiserver-cluster2 1/1 Running 0 44s 192.168.58.2 cluster2 <none>
 <none>
kube-system kube-controller-manager-cluster2 1/1 Running 0 44s 192.168.58.2 cluster2 <none>
 <none>
kube-system kube-proxy-bqk4r 1/1 Running 0 38s 192.168.58.2 cluster2 <none>
 <none>
kube-system kube-scheduler-cluster2 1/1 Running 0 44s 192.168.58.2 cluster2 <none>
 <none>
kube-system storage-provisioner 1/1 Running 1 49s 192.168.58.2 cluster2 <none>
 <none>

The second cluster and Cilium is ready to use.

Task 9.1.2: Enable Cluster Mesh on both Cluster
Now let us enable the Cluster Mesh using the cilium CLI on both clusters:

kubectl get pod -A -o wide

Note
Although so far we used Helm to install and update Cilium, enabling Cilium Service Mesh using Helm is
currently undocumented . We make an exception from the rule to never mix Helm and CLI installations and
do it with the CLI.

cilium clustermesh enable --context cluster1 --service-type NodePort
cilium clustermesh enable --context cluster2 --service-type NodePort

- acend gmbh

62 / 101

https://github.com/cilium/cilium/issues/19057

You can now verify the Cluster Mesh status using:

⚠ ️ Service type NodePort detected! Service may fail when nodes are removed from the cluster!
� Cluster access information is available:
 - 192.168.49.2:31839
� Service "clustermesh-apiserver" of type "NodePort" found
� [cluster1] Waiting for deployment clustermesh-apiserver to become ready...
� Cluster Connections:
� Global services: [min:0 / avg:0.0 / max:0]

To connect the two clusters, the following step needs to be done in one direction only. The connection will
automatically be established in both directions:

The output should look something like this:

� Extracting access information of cluster cluster2...
� Extracting secrets from cluster cluster2...
⚠ ️ Service type NodePort detected! Service may fail when nodes are removed from the cluster!
ℹ️ Found ClusterMesh service IPs: [192.168.58.2]
� Extracting access information of cluster cluster1...
� Extracting secrets from cluster cluster1...
⚠ ️ Service type NodePort detected! Service may fail when nodes are removed from the cluster!
ℹ️ Found ClusterMesh service IPs: [192.168.49.2]
� Connecting cluster cluster1 -> cluster2...
� Secret cilium-clustermesh does not exist yet, creating it...
� Patching existing secret cilium-clustermesh...
� Patching DaemonSet with IP aliases cilium-clustermesh...
� Connecting cluster cluster2 -> cluster1...
� Secret cilium-clustermesh does not exist yet, creating it...
� Patching existing secret ciliugm-clustermesh...
� Patching DaemonSet with IP aliases cilium-clustermesh...
� Connected cluster cluster1 and cluster2!

It may take a bit for the clusters to be connected. You can execute the following command

to wait for the connection to be successful. The output should be:

⚠ ️ Service type NodePort detected! Service may fail when nodes are removed from the cluster!
� Cluster access information is available:
 - 192.168.58.2:32117
� Service "clustermesh-apiserver" of type "NodePort" found
� [cluster2] Waiting for deployment clustermesh-apiserver to become ready...
� All 1 nodes are connected to all clusters [min:1 / avg:1.0 / max:1]
� Cluster Connections:
- cluster1: 1/1 configured, 1/1 connected
� Global services: [min:3 / avg:3.0 / max:3]

The two clusters are now connected.

cilium clustermesh status --context cluster1 --wait

cilium clustermesh connect --context cluster1 --destination-context cluster2

cilium clustermesh status --context cluster1 --wait

- acend gmbh

63 / 101

Task 9.1.3: Cluster Mesh Troubleshooting
Use the following list of steps to troubleshoot issues with Cluster Mesh:

or

which gives you an output similar to this:

 /¯¯\
 /¯¯__/¯¯\ Cilium: OK
 __/¯¯__/ Operator: OK
 /¯¯__/¯¯\ Hubble: OK
 __/¯¯__/ ClusterMesh: OK
 __/

DaemonSet cilium Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 1, Ready: 1/1, Available: 1/1
Deployment hubble-relay Desired: 1, Ready: 1/1, Available: 1/1
Deployment clustermesh-apiserver Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium Running: 1
 cilium-operator Running: 1
 hubble-relay Running: 1
 clustermesh-apiserver Running: 1
Cluster Pods: 6/6 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.12.10: 1
 cilium-operator quay.io/cilium/operator-generic:v1.12.10: 1
 hubble-relay quay.io/cilium/hubble-relay:v1.12.10: 1
 clustermesh-apiserver quay.io/coreos/etcd:v3.4.13: 1
 clustermesh-apiserver quay.io/cilium/clustermesh-apiserver:v1.12.10: 1

If you cannot resolve the issue with the above commands, follow the steps in Cilium’s Cluster Mesh
Troubleshooting Guide .

cilium status --context cluster1

cilium status --context cluster2

- acend gmbh

64 / 101

https://docs.cilium.io/en/v1.12/operations/troubleshooting/#troubleshooting-clustermesh

9.2. Load-balancing with Global Services
This lab will guide you to perform load-balancing and service discovery across multiple Kubernetes clusters.

Task 9.2.1: Load-balancing with Global Services
Establishing load-balancing between clusters is achieved by defining a Kubernetes service with an identical
name and Namespace in each cluster and adding the annotation io.cilium/global-service: "true" to declare it
global. Cilium will automatically perform load-balancing to pods in both clusters.

We are going to deploy a global service and a sample application on both of our connected clusters.

First the Kubernetes service. Create a file svc.yaml with the following content:

Apply this with:

Then deploy our sample application on both clusters.

cluster1.yaml :

apiVersionapiVersion:: v1
kindkind:: Service
metadatametadata::
 namename:: rebel-base
 annotationsannotations::
 io.cilium/global-serviceio.cilium/global-service:: "true"
specspec::
 typetype:: ClusterIP
 portsports::
 - portport:: 8080
 selectorselector::
 namename:: rebel-base

kubectl --context cluster1 apply -f svc.yaml
kubectl --context cluster2 apply -f svc.yaml

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: rebel-base
specspec::
 selectorselector::
 matchLabelsmatchLabels::
 namename:: rebel-base
 replicasreplicas:: 22
 templatetemplate::
 metadatametadata::
 labelslabels::
 namename:: rebel-base
 specspec::
 containerscontainers::
 - namename:: rebel-base
 imageimage:: docker.io/nginx:1.15.8
 volumeMountsvolumeMounts::
 - namename:: html
 mountPathmountPath:: /usr/share/nginx/html/

- acend gmbh

65 / 101

cluster2.yaml :

 mountPathmountPath:: /usr/share/nginx/html/
 livenessProbelivenessProbe::
 httpGethttpGet::
 pathpath:: /
 portport:: 8080
 periodSecondsperiodSeconds:: 11
 readinessProbereadinessProbe::
 httpGethttpGet::
 pathpath:: /
 portport:: 8080
 volumesvolumes::
 - namename:: html
 configMapconfigMap::
 namename:: rebel-base-response
 itemsitems::
 - keykey:: message
 pathpath:: index.html

apiVersionapiVersion:: v1
kindkind:: ConfigMap
metadatametadata::
 namename:: rebel-base-response
datadata::
 messagemessage:: "{\"Galaxy\": \"Alderaan\", \"Cluster\": "{\"Galaxy\": \"Alderaan\", \"Cluster\": \"Cluster-1\"}\n"

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: x-wing
specspec::
 selectorselector::
 matchLabelsmatchLabels::
 namename:: x-wing
 replicasreplicas:: 22
 templatetemplate::
 metadatametadata::
 labelslabels::
 namename:: x-wing
 specspec::
 containerscontainers::
 - namename:: x-wing-container
 imageimage:: docker.io/cilium/json-mock:1.2
 livenessProbelivenessProbe::
 execexec::
 commandcommand::
 - curl
 - -sS
 - -o
 - /dev/null
 - localhost
 readinessProbereadinessProbe::
 execexec::
 commandcommand::
 - curl
 - -sS
 - -o
 - /dev/null
 - localhost

kubectl --context cluster1 apply -f cluster1.yaml

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: rebel-base
specspec::

- acend gmbh

66 / 101

specspec::
 selectorselector::
 matchLabelsmatchLabels::
 namename:: rebel-base
 replicasreplicas:: 22
 templatetemplate::
 metadatametadata::
 labelslabels::
 namename:: rebel-base
 specspec::
 containerscontainers::
 - namename:: rebel-base
 imageimage:: docker.io/nginx:1.15.8
 volumeMountsvolumeMounts::
 - namename:: html
 mountPathmountPath:: /usr/share/nginx/html/
 livenessProbelivenessProbe::
 httpGethttpGet::
 pathpath:: /
 portport:: 8080
 periodSecondsperiodSeconds:: 11
 readinessProbereadinessProbe::
 httpGethttpGet::
 pathpath:: /
 portport:: 8080
 volumesvolumes::
 - namename:: html
 configMapconfigMap::
 namename:: rebel-base-response
 itemsitems::
 - keykey:: message
 pathpath:: index.html

apiVersionapiVersion:: v1
kindkind:: ConfigMap
metadatametadata::
 namename:: rebel-base-response
datadata::
 messagemessage:: "{\"Galaxy\": \"Alderaan\", \"Cluster\": "{\"Galaxy\": \"Alderaan\", \"Cluster\": \"Cluster-2\"}\n"

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: x-wing
specspec::
 selectorselector::
 matchLabelsmatchLabels::
 namename:: x-wing
 replicasreplicas:: 22
 templatetemplate::
 metadatametadata::
 labelslabels::
 namename:: x-wing
 specspec::
 containerscontainers::
 - namename:: x-wing-container
 imageimage:: docker.io/cilium/json-mock:1.2
 livenessProbelivenessProbe::
 execexec::
 commandcommand::
 - curl
 - -sS
 - -o
 - /dev/null
 - localhost
 readinessProbereadinessProbe::
 execexec::
 commandcommand::
 - curl
 - -sS
 - -o
 - /dev/null
 - localhost

- acend gmbh

67 / 101

Now you can execute from either cluster the following command (there are two x-wing pods, simply select
one):

as a result you get the following output:

{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}

and as you see, you get results from both clusters. Even if you scale down your rebel-base Deployment on
cluster1 with

and then execute the curl for loop again, you still get answers, this time only from cluster2 :

{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-2"}

Scale your rebel-base Deployment back to one replica:

kubectl --context cluster2 apply -f cluster2.yaml

XWINGPOD==$($(kubectl --context cluster1 get pod -l name==x-wing -o jsonpath=="{.items[0].metadata.name}"))
forfor i in {{1..10}};; dodo
 kubectl --context cluster1 exec -it $XWINGPOD -- curl -m 11 rebel-base
donedone

kubectl --context cluster1 scale deployment rebel-base --replicas==00

kubectl --context cluster1 scale deployment rebel-base --replicas==11

- acend gmbh

68 / 101

9.3. Network Policies

Task 9.3.1: Allowing Specific Communication Between
Clusters
The following policy illustrates how to allow particular pods to communicate between two clusters.

Kubernetes security policies are not automatically distributed across clusters, it is your responsibility to
apply CiliumNetworkPolicy or NetworkPolicy in all clusters.

Create a file cnp-cm.yaml with the above content and apply the CiliumNetworkPolicy to both clusters:

Let us run our curl for loop again

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: "allow-cross-cluster"
specspec::
 descriptiondescription:: "Allow x-wing in cluster1 to only contact rebel-base in cluster1"
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 namename:: x-wing
 io.cilium.k8s.policy.clusterio.cilium.k8s.policy.cluster:: cluster1
 egressegress::
 - toEndpointstoEndpoints::
 - matchLabelsmatchLabels::
 "k8s:io.kubernetes.pod.namespace": "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": "k8s:k8s-app": kube-dns
 toPortstoPorts::
 - portsports::
 - portport:: "53"
 protocolprotocol:: ANY
 rulesrules::
 dnsdns::
 - matchPatternmatchPattern:: "*"
 - toEndpointstoEndpoints::
 - matchLabelsmatchLabels::
 namename:: rebel-base
 io.cilium.k8s.policy.clusterio.cilium.k8s.policy.cluster:: cluster1

Note
For the Pods to resolve the rebel-base service name they still need connectivity to Kubernetes DNS Service.
Therefore access to that is also allowed.

kubectl --context cluster1 apply -f cnp-cm.yaml
kubectl --context cluster2 apply -f cnp-cm.yaml

XWINGPOD==$($(kubectl --context cluster1 get pod -l name==x-wing -o jsonpath=="{.items[0].metadata.name}"))
forfor i in {{1..10}};; dodo
 kubectl --context cluster1 exec -it $XWINGPOD -- curl -m 11 rebel-base
donedone

- acend gmbh

69 / 101

and as an result you see:

curl: (28) Connection timed out after 1001 milliseconds
command terminated with exit code 28
curl: (28) Connection timed out after 1000 milliseconds
command terminated with exit code 28
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
curl: (28) Connection timed out after 1000 milliseconds
command terminated with exit code 28
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
curl: (28) Connection timed out after 1000 milliseconds
command terminated with exit code 28
{"Galaxy": "Alderaan", "Cluster": "Cluster-1"}
curl: (28) Connection timed out after 1000 milliseconds
command terminated with exit code 28

All connections to cluster2 are dropped while the ones to cluster1 are still working.

Task 9.3.2: Cleanup
We will disconnect our cluster mesh again and delete the second cluster:

cilium clustermesh disconnect --context cluster1 --destination-context cluster2
minikube delete --profile cluster2
minikube profile cluster1

- acend gmbh

70 / 101

10. Advanced Networking

10.1. Host Firewall
Cilium is capable to act as a host firewall to enforce security policies for Kubernetes nodes. In this lab, we
are going to show you briefly how this works.

Task 10.1.1: Enable the Host Firewall in Cilium
We need to enable the host firewall in the Cilium config. This can be done using Helm:

The devices flag refers to the network devices Cilium is configured on such as eth0 . Omitting this option
leads Cilium to auto-detect what interfaces the host firewall applies to.

Make sure to restart the cilium Pods with:

At this point, the Cilium-managed nodes are ready to enforce Network Policies.

Task 10.1.2: Attach a Label to the Node
In this lab, we will apply host policies only to nodes with the label node-access=ssh . We thus first need to
attach that label to a node in the cluster.

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.1.0.0/16}} \
 --set cluster.name==cluster1 \
 --set cluster.id==11 \
 --set operator.replicas==11 \
 --set upgradeCompatibility==1.11 \
 --set kubeProxyReplacement==disabled \
 --set hubble.enabled==true \
 --set hubble.relay.enabled==true \
 --set hubble.ui.enabled==true \
 --set prometheus.enabled==true \
 --set operator.prometheus.enabled==true \
 --set hubble.enabled==true \
 --set hubble.metrics.enabled=="{dns,drop:destinationContext=pod;sourceContext=pod,tcp,flow,port-distribution,icmp,http
:destinationContext=pod}" \
 `# enable host firewall:` \
 --set hostFirewall.enabled==true \
 --set devices=='{eth0}' \
 --wait

kubectl -n kube-system rollout restart ds/cilium

kubectl label node cluster1 node-access==ssh

- acend gmbh

71 / 101

Task 10.1.3: Enable Policy Audit Mode for the Host
Endpoint
Host Policies enforce access control over connectivity to and from nodes. Particular care must be taken to
ensure that when host policies are imported, Cilium does not block access to the nodes or break the
cluster’s normal behavior (for example by blocking communication with kube-apiserver).

To avoid such issues, we can switch the host firewall in audit mode, to validate the impact of host policies
before enforcing them. When Policy Audit Mode is enabled, no network policy is enforced so this setting is
not recommended for production deployment.

Verification:

The output should show you:

PolicyAuditMode Enabled

Task 10.1.4: Apply a Host Network Policy
Host Policies match on node labels using a Node Selector to identify the nodes to which the policy applies.
The following policy applies to all nodes. It allows communications from outside the cluster only on port
TCP/22. All communications from the cluster to the hosts are allowed.

Host policies don’t apply to communications between pods or between pods and the outside of the cluster,
except if those pods are host-networking pods.

Create a file ccwnp.yaml with the following content:

CILIUM_POD_NAME==$($(kubectl -n kube-system get pods -l "k8s-app=cilium" -o jsonpath=="{.items[?(@.spec.nodeName=='cluster1
')].metadata.name}"))
HOST_EP_ID==$($(kubectl -n kube-system exec $CILIUM_POD_NAME -- cilium endpoint list -o jsonpath=='{[?(@.status.identity.id
==1)].id}'))
kubectl -n kube-system exec $CILIUM_POD_NAME -- cilium endpoint config $HOST_EP_ID PolicyAuditMode==Enabled

kubectl -n kube-system exec $CILIUM_POD_NAME -- cilium endpoint config $HOST_EP_ID || grep PolicyAuditMode

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumClusterwideNetworkPolicy
metadatametadata::
 namename:: "demo-host-policy"
specspec::
 descriptiondescription:: ""
 nodeSelectornodeSelector::
 matchLabelsmatchLabels::
 node-accessnode-access:: ssh
 ingressingress::
 - toPortstoPorts::
 - portsports::
 - portport:: "22"
 protocolprotocol:: TCP

- acend gmbh

72 / 101

https://docs.cilium.io/en/latest/policy/language/#hostpolicies

And then apply this CiliumClusterwideNetworkPolicy with:

The host is represented as a special endpoint, with label reserved:host , in the output of the command cilium

endpoint list . You can therefore inspect the status of the policy using that command:

You will see that the ingress policy enforcement for the reserved:host endpoint is Disabled but with Audit

enabled:

Defaulted container "cilium-agent" out of: cilium-agent, mount-cgroup (init), clean-cilium-state (init)
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value])
 IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
671 Disabled (Audit) Disabled 1 k8s:minikube.k8s.io/commit=3e64b11ed75e56e4898ea85f96b2e4af0
301f43d ready
 k8s:minikube.k8s.io/name=cluster1
 k8s:minikube.k8s.io/updated_at=2022_02_14T13_45_35_0700
 k8s:minikube.k8s.io/version=v1.25.1
 k8s:node-access=ssh
 k8s:node-role.kubernetes.io/control-plane
 k8s:node-role.kubernetes.io/master
 k8s:node.kubernetes.io/exclude-from-external-load-balancers
 reserved:host
810 Disabled Disabled 129160 k8s:io.cilium.k8s.namespace.labels.kubernetes.io/metadata.na
me=kube-system 10.1.0.249 ready
 k8s:io.cilium.k8s.policy.cluster=cluster1
 k8s:io.cilium.k8s.policy.serviceaccount=coredns
 k8s:io.kubernetes.pod.namespace=kube-system
 k8s:k8s-app=kube-dns
4081 Disabled Disabled 4 reserved:health

As long as the host endpoint is running in audit mode, communications disallowed by the policy won’t be
dropped. They will however be reported by cilium monitor as action audit . The audit mode thus allows you to
adjust the host policy to your environment, to avoid unexpected connection breakages.

You can montitor the policy verdicts with:

Open a second terminal to produce some traffic:

kubectl apply -f ccwnp.yaml

kubectl -n kube-system exec $($(kubectl -n kube-system get pods -l k8s-app==cilium -o jsonpath=='{.items[0].metadata.name}'
)) -- cilium endpoint list

kubectl -n kube-system exec $($(kubectl -n kube-system get pods -l k8s-app==cilium -o jsonpath=='{.items[0].metadata.name}'
)) -- cilium monitor -t policy-verdict --related-to $HOST_EP_ID

Note
If you are working in our Webshell environment, make sure to first login again to your VM after opening the
second terminal.

curl -k https://192.168.49.2:8443

- acend gmbh

73 / 101

Also try to start an SSH session (you can cancel the command when the password promt is shown):

In the verdict log you should see an output similar to the following one. For the curl request you see that
the action is set to audit :

Policy verdict log: flow 0xfd71ed86 local EP ID 671, remote ID world, proto 6, ingress, action audit, match none, 192.1
68.49.1:50760 -> 192.168.49.2:8443 tcp SYN
Policy verdict log: flow 0xfd71ed86 local EP ID 671, remote ID world, proto 6, ingress, action audit, match none, 192.1
68.49.1:50760 -> 192.168.49.2:8443 tcp SYN

The request to the SSH port has action allow :

Policy verdict log: flow 0x6b5b1b60 local EP ID 671, remote ID world, proto 6, ingress, action allow, match L4-Only, 19
2.168.49.1:48254 -> 192.168.49.2:22 tcp SYN
Policy verdict log: flow 0x6b5b1b60 local EP ID 671, remote ID world, proto 6, ingress, action allow, match L4-Only, 19
2.168.49.1:48254 -> 192.168.49.2:22 tcp SYN

Task 10.1.5: Clean Up
Once you are confident all required communication to the host from outside the cluster is allowed, you can
disable policy audit mode to enforce the host policy.

We are not going to do this extended task (as it would require some more rules for the cluster to continue
working). But the command to disable the audit mode looks like this:

kubectl -n kube-system exec $CILIUM_POD_NAME -- cilium endpoint config $HOST_EP_ID PolicyAuditMode=Disabled

Simply cleanup and continue:

ssh 192.168.49.2

Note
When enforcing the host policy, make sure that none of the communications required to access the cluster
or for the cluster to work properly are denied. They should appear as action allow.

kubectl delete ccnp demo-host-policy
kubectl label node cluster1 node-access-

- acend gmbh

74 / 101

10.2. Kubernetes without kube-proxy
In this lab, we are going to provision a new Kubernetes cluster without kube-proxy to use Cilium as a full
replacement for it.

Task 10.2.1: Deploy a new Kubernetes Cluster without
kube-proxy

Create a new Kubernetes cluster using minikube . As minikube uses kubeadm we can skip the phase where
kubeadm installs the kube-proxy addon. Execute the following command to create a third cluster:

U [cluster3] minikube v1.24.3 on Ubuntu 20.04
� Automatically selected the docker driver. Other choices: virtualbox, ssh
� With --network-plugin=cni, you will need to provide your own CNI. See --cni flag as a user-friendly alternative
� Starting control plane node cluster3 in cluster cluster3
� Pulling base image ...
� Creating docker container (CPUs=2, Memory=8000MB) ...
� Preparing Kubernetes v1.24.3 on Docker 20.10.8 ...
 ▪ kubeadm.skip-phases=addon/kube-proxy
 ▪ Generating certificates and keys ...
 ▪ Booting up control plane ...
 ▪ Configuring RBAC rules ...
� Verifying Kubernetes components...
 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
� Enabled addons: storage-provisioner, default-storageclass
� Done! kubectl is now configured to use "cluster3" cluster and "default" namespace by default

Task 10.2.2: Deploy Cilium and enable the Kube Proxy
replacement
As the cilium and cilium-operator Pods by default try to communicate with the Kubernetes API using the
default kubernetes service IP, they cannot do this with disabled kube-proxy . We, therefore, need to set the
KUBERNETES_SERVICE_HOST and KUBERNETES_SERVICE_PORT environment variables to tell the two Pods how to connect to

the Kubernetes API.

To find the correct IP address execute the following command:

Use the shown IP address and port in the next Helm command to install Cilium:

minikube start --network-plugin==cni --cni==false --kubernetes-version==1.24.3 --extra-config==kubeadm.skip-phases==addon/ku
be-proxy -p kubeless

API_SERVER_IP==$($(kubectl config view -o jsonpath=='{.clusters[?(@.name == "kubeless")].cluster.server}' || cut -f 33 -d / ||
 cut -f1 -d:))
API_SERVER_PORT==$($(kubectl config view -o jsonpath=='{.clusters[?(@.name == "kubeless")].cluster.server}' || cut -f 33 -d /
 || cut -f2 -d:))
echo "$API_SERVER_IP:$API_SERVER_PORT"

- acend gmbh

75 / 101

We can now compare the running Pods on cluster1 and kubeless in the kube-system Namespace.

Here we see the running kube-proxy pod:

NAME READY STATUS RESTARTS AGE
cilium-operator-cb65bcb9b-cnxnq 1/1 Running 0 19m
cilium-tq9kk 1/1 Running 0 8m42s
clustermesh-apiserver-67fd99fd9b-x2svr 2/2 Running 0 61m
coredns-6d4b75cb6d-fd6vk 1/1 Running 1 (82m ago) 97m
etcd-cluster1 1/1 Running 1 (82m ago) 98m
hubble-relay-84b4ddb556-nvftg 1/1 Running 0 19m
hubble-ui-579fdfbc58-t6xst 2/2 Running 0 19m
kube-apiserver-cluster1 1/1 Running 1 (81m ago) 98m
kube-controller-manager-cluster1 1/1 Running 1 (82m ago) 98m
kube-proxy-5j84l 1/1 Running 1 (82m ago) 97m
kube-scheduler-cluster1 1/1 Running 1 (81m ago) 98m
storage-provisioner 1/1 Running 2 (82m ago) 98m

On kubeless there is no kube-proxy Pod anymore:

NAME READY STATUS RESTARTS AGE
cilium-operator-68bfb94678-785dk 1/1 Running 0 17m
cilium-vrqms 1/1 Running 0 17m
coredns-64897985d-fk5lj 1/1 Running 0 59m
etcd-cluster3 1/1 Running 0 59m
kube-apiserver-cluster3 1/1 Running 0 59m
kube-controller-manager-cluster3 1/1 Running 0 59m
kube-scheduler-cluster3 1/1 Running 0 59m
storage-provisioner 1/1 Running 13 (17m ago) 59m

Task 10.2.3: Deploy our simple app again to the new

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --set ipam.operator.clusterPoolIPv4PodCIDRList={={10.3.0.0/16}} \
 --set cluster.name==kubeless \
 --set cluster.id==33 \
 --set operator.replicas==11 \
 --set kubeProxyReplacement==strict \
 --set k8sServiceHost==$API_SERVER_IP \
 --set k8sServicePort==$API_SERVER_PORT \
 --wait

Note
Having a cluster running with kubeProxyReplacement set to partial breaks other minikube clusters running
on the same host. If you still want to play around with cluster1 after this chapter, you need to reboot your
maching and start only cluster1 with minikube start --profile cluster1

kubectl --context cluster1 -n kube-system get pod

kubectl --context kubeless -n kube-system get pod

- acend gmbh

76 / 101

cluster
As this is a new cluster we want to deploy our simple-app.yaml from lab 03 again to run some experiments.
Run the following command using the simple-app.yaml from lab 03:

Now let us redo the task from lab 03.

Let’s make life again a bit easier by storing the Pod’s name into an environment variable so we can reuse it
later again:

Then execute:

and

You see that altought we have no kube-proxy running, the backend service can still be reached.

HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 14 Dec 2021 10:01:16 GMT
Connection: keep-alive

HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 14 Dec 2021 10:01:16 GMT
Connection: keep-alive

kubectl apply -f simple-app.yaml

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${FRONTEND}
NOT_FRONTEND==$($(kubectl get pods -l app==not-frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${NOT_FRONTEND}

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

77 / 101

11. Cilium Service Mesh
With release 1.12 Cilium enabled direct ingress support and service mesh features like layer 7
loadbalancing

Task 11.1: Installation

For Kubernetes Ingress to work kubeProxyReplacement needs to be set to strict or partial . This is why we
stay on the kubeless cluster.

Wait until cilium is ready (check with cilium status). For Ingress to work it is necessary to restart the agent
and the operator.

Task 11.2: Create Ingress
Cilium Service Mesh can handle ingress traffic with its Envoy proxy.

We will use this feature to allow traffic to our simple app from outside the cluster. Create a file named
ingress.yaml with the text below inside:

Apply it with:

helm upgrade -i cilium cilium/cilium --version 1.12.10 \
 --namespace kube-system \
 --reuse-values \
 --set ingressController.enabled==true \
 --wait

kubectl -n kube-system rollout restart deployment/cilium-operator
kubectl -n kube-system rollout restart ds/cilium

apiVersionapiVersion:: networking.k8s.io/v1
kindkind:: Ingress
metadatametadata::
 namename:: backend
specspec::
 ingressClassNameingressClassName:: cilium
 rulesrules::
 - httphttp::
 pathspaths::
 - backendbackend::
 serviceservice::
 namename:: backend
 portport::
 numbernumber:: 80808080
 pathpath:: /
 pathTypepathType:: Prefix

kubectl apply -f ingress.yaml

- acend gmbh

78 / 101

Check the ingress and the service:

We see that Cilium created a Service with type Loadbalancer for our Ingress. Unfortunately, Minikube has no
loadbalancer deployed, in our setup the external IP will stay pending.

As a workaround, we can test the service from inside Kubernetes.

You should get the following output:

[
 {
 "id": 1,
 "body": "public information"
 }
]pod "curl" deleted

Task 11.3: Layer 7 Loadbalancing
Ingress alone is not really a Service Mesh feature. Let us test a traffic control example by loadbalancing a
service inside the proxy.

Start by creating the second service. Create a file named backend2.yaml and put in the text below:

kubectl describe ingress backend
kubectl get svc cilium-ingress-backend

SERVICE_IP==$($(kubectl get svc cilium-ingress-backend -ojsonpath={={.spec.clusterIP}}))
kubectl run --rm==true -it --restart==Never --image==curlimages/curl -- curl --connect-timeout 55 http://${SERVICE_IP}/publ
ic

- acend gmbh

79 / 101

Apply it:

apiVersionapiVersion:: v1
datadata::
 default.jsondefault.json:: ||
 {
 "private": [
 { "id": 1, "body": "another secret information from a different backend" }
],
 "public": [
 { "id": 1, "body": "another public information from a different backend" }
]
 }
kindkind:: ConfigMap
metadatametadata::
 namename:: default-json

apiVersionapiVersion:: apps/v1
kindkind:: Deployment
metadatametadata::
 namename:: backend-2
 labelslabels::
 appapp:: backend-2
specspec::
 replicasreplicas:: 11
 selectorselector::
 matchLabelsmatchLabels::
 appapp:: backend-2
 templatetemplate::
 metadatametadata::
 labelslabels::
 appapp:: backend-2
 specspec::
 volumesvolumes::
 - namename:: default-json
 configMapconfigMap::
 namename:: default-json
 containerscontainers::
 - namename:: backend-container
 envenv::
 - namename:: PORT
 valuevalue:: "8080"
 portsports::
 - containerPortcontainerPort:: 80808080
 imageimage:: docker.io/cilium/json-mock:1.2
 imagePullPolicyimagePullPolicy:: IfNotPresent
 volumeMountsvolumeMounts::
 - namename:: default-json
 mountPathmountPath:: /default.json
 subPathsubPath:: default.json

apiVersionapiVersion:: v1
kindkind:: Service
metadatametadata::
 namename:: backend-2
 labelslabels::
 appapp:: backend-2
specspec::
 typetype:: ClusterIP
 selectorselector::
 appapp:: backend-2
 portsports::
 - namename:: http
 portport:: 80808080

kubectl apply -f backend2.yaml

- acend gmbh

80 / 101

Call it:

We see output very similiar to our simple application backend, but with a changed text.

As layer 7 loadbalancing requires traffic to be routed through the proxy, we will enable this for our backend
Pods using a CiliumNetworkPolicy with HTTP rules. We will block access to /public and allow requests to
/private :

Create a file cnp-l7-sm.yaml with the following content:

And apply the CiliumNetworkPolicy with:

kubectl run --rm==true -it --restart==Never --image==curlimages/curl -- curl --connect-timeout 33 http://backend-2:8080/pub
lic

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: "rule1"
specspec::
 descriptiondescription:: "enable L7 without blocking"
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 appapp:: backend
 ingressingress::
 - fromEntitiesfromEntities::
 - "all"
 toPortstoPorts::
 - portsports::
 - portport:: "8080"
 protocolprotocol:: TCP
 rulesrules::
 httphttp::
 - methodmethod:: "GET"
 pathpath:: "/private"

apiVersionapiVersion:: "cilium.io/v2"
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: "rule2"
specspec::
 descriptiondescription:: "enable L7 without blocking"
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 appapp:: backend-2
 ingressingress::
 - fromEntitiesfromEntities::
 - "all"
 toPortstoPorts::
 - portsports::
 - portport:: "8080"
 protocolprotocol:: TCP
 rulesrules::
 httphttp::
 - methodmethod:: "GET"
 pathpath:: "/private"

kubectl apply -f cnp-l7-sm.yaml

- acend gmbh

81 / 101

Until now only the backend service is replying to Ingress traffic. Now we configure Envoy to loadbalance the
traffic 50/50 between backend and backend-2 with retries. We are using a CustomResource called
CiliumEnvoyConfig for this. Create a file envoyconfig.yaml with the following content:

apiVersionapiVersion:: cilium.io/v2
kindkind:: CiliumEnvoyConfig
metadatametadata::
 namename:: envoy-lb-listener
specspec::
 servicesservices::
 - namename:: backend
 namespacenamespace:: default
 - namename:: backend-2
 namespacenamespace:: default
 resourcesresources::
 - "@type": "@type": type.googleapis.com/envoy.config.listener.v3.Listener
 namename:: envoy-lb-listener
 filter_chainsfilter_chains::
 - filtersfilters::
 - namename:: envoy.filters.network.http_connection_manager
 typed_configtyped_config::
 "@type": "@type": type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnection
Manager
 stat_prefixstat_prefix:: envoy-lb-listener
 rdsrds::
 route_config_nameroute_config_name:: lb_route
 http_filtershttp_filters::
 - namename:: envoy.filters.http.router
 typed_configtyped_config::
 "@type": "@type": type.googleapis.com/envoy.extensions.filters.http.router.v3.Router
 - "@type": "@type": type.googleapis.com/envoy.config.route.v3.RouteConfiguration
 namename:: lb_route
 virtual_hostsvirtual_hosts::
 - namename:: "lb_route"
 domainsdomains:: [["*"]]
 routesroutes::
 - matchmatch::
 prefixprefix:: "/private"
 routeroute::
 weighted_clustersweighted_clusters::
 clustersclusters::
 - namename:: "default/backend"
 weightweight:: 5050
 - namename:: "default/backend-2"
 weightweight:: 5050
 retry_policyretry_policy::
 retry_onretry_on:: 5xx
 num_retriesnum_retries:: 33
 per_try_timeoutper_try_timeout:: 1s
 - "@type": "@type": type.googleapis.com/envoy.config.cluster.v3.Cluster
 namename:: "default/backend"
 connect_timeoutconnect_timeout:: 5s
 lb_policylb_policy:: ROUND_ROBIN
 typetype:: EDS
 outlier_detectionoutlier_detection::
 split_external_local_origin_errorssplit_external_local_origin_errors:: truetrue
 consecutive_local_origin_failureconsecutive_local_origin_failure:: 22
 - "@type": "@type": type.googleapis.com/envoy.config.cluster.v3.Cluster
 namename:: "default/backend-2"
 connect_timeoutconnect_timeout:: 3s
 lb_policylb_policy:: ROUND_ROBIN
 typetype:: EDS
 outlier_detectionoutlier_detection::
 split_external_local_origin_errorssplit_external_local_origin_errors:: truetrue
 consecutive_local_origin_failureconsecutive_local_origin_failure:: 22

Note
If you want to read more about Envoy configuration Envoy Architectural Overview is a good place to start.

- acend gmbh

82 / 101

https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/http/http

Apply the CiliumEnvoyConfig with:

Test it by running curl a few times – different backends should respond:

We see both backends replying. If you call it many times the distribution would be equal.

This basic traffic control example shows only one function of Cilium Service Mesh, other features include i.e.
TLS termination, support for tracing and canary-rollouts.

Task 11.4: Cleanup
We don’t need this cluster anymore and therefore you can delete the cluster with:

kubectl apply -f envoyconfig.yaml

forfor i in {{1..10}};; dodo
 kubectl run --rm==true -it --image==curlimages/curl --restart==Never curl -- curl --connect-timeout 55 http://backend:808
0/private
donedone

[[
 {{

 "id": 1,

 "body": "another secret information from a different backend"

 }}

]]pod "curl" deleted

[[

 {{

 "id": 1,

 "body": "secret information"

 }}

]]pod "curl" deleted

minikube delete --profile kubeless

- acend gmbh

83 / 101

12. eBPF
To deepen our understanding of eBPF we will write and compile a small eBPF app:

Task 12.1: Hello World
ebpf-go is a pure Go library that provides utilities for loading, compiling, and debugging eBPF programs
written by the cilium project.

We will use this library and add our own hello world app as an example to it:

In the helloworld directory create two files named helloworld.bpf.c (eBPF code) and helloworld.go (loading,
user side):

helloworld.bpf.c:

helloworld.go:

git clone https://github.com/cilium/ebpf.git
cd ebpf/
git checkout v0.9.3
cd examples
mkdir helloworld
cd helloworld

#include "common.h"

// SEC is a macro that expands to create an ELF section which bpf loaders parse.
// we want our function to be executed whenever syscall execve (program execution) is called
SEC(("tracepoint/syscalls/sys_enter_execve"))
intint bpf_prog((voidvoid **ctx)) {{
 charchar msg[][] == "Hello world";;
 // bpf_printk is a bpf helper function which writes strings to /sys/kernel/debug/tracing/trace_pipe (good for debuggi
ng purposes)
 bpf_printk(("%s",, msg););
 // bpf programs need to return an int
 returnreturn 00;;
}}

charchar LICENSE[][] SEC(("license")) == "GPL";;

- acend gmbh

84 / 101

To compile the C code into ebpf bytecode with the corresponding Go source files we use a tool named
bpf2go along with clang. For a stable outcome we use the toolchain inside a docker container:

Now in the container we generate the ELF and go files:

Let us examine the newly created files: bpf_bpfel.go / bpf_bpfeb.go contain the go code for the user state side
of our app. The bpf_bpfel.o / bpf_bpfeb.o files are ELF files and can be examined using readelf:

packagepackage main

importimport ((
 "log"

 "github.com/cilium/ebpf/link"
 "github.com/cilium/ebpf/rlimit"
))

funcfunc main()() {{

 // Allow the current process to lock memory for eBPF resources.
 ifif err :=:= rlimit..RemoveMemlock();(); err !=!= nilnil {{
 log..Fatal((err))
 }}

 // Here we load our bpf code into the kernel, these functions are in the
 // .go file created by bpf2go
 objs :=:= bpfObjects{}{}
 ifif err :=:= loadBpfObjects((&&objs,, nilnil);); err !=!= nilnil {{
 log..Fatalf(("loading objects: %s",, err))
 }}
 deferdefer objs..Close()()

 //SEC("tracepoint/syscalls/sys_enter_execve")
 kp,, err :=:= link..Tracepoint(("syscalls",, "sys_enter_execve",, objs..BpfProg,, nilnil))
 ifif err !=!= nilnil {{
 log..Fatalf(("opening tracepoint: %s",, err))
 }}
 deferdefer kp..Close()()

 forfor {{
 }}

 log..Println(("Received signal, exiting program.."))
}}

docker pull "ghcr.io/cilium/ebpf-builder:1666886595"
docker run -it --rm -v "$($(pwd))/../..":/ebpf \
 -w /ebpf/examples/helloworld \
 --env MAKEFLAGS \
 --env CFLAGS=="-fdebug-prefix-map=/ebpf=." \
 --env HOME=="/tmp" \
 "ghcr.io/cilium/ebpf-builder:1666886595" /bin/bash

GOPACKAGE==main go run github.com/cilium/ebpf/cmd/bpf2go -cc clang-14 -cflags '-O2 -g -Wall -Werror' bpf helloworld.bpf.
c -- -I../headers

readelf --section-details --headers bpf_bpfel.o

- acend gmbh

85 / 101

We see two things:

that Machine reads “Linux BPF” and
our tracepoint sys_enter_execve in the sections part (tracepoint/syscalls/sys_enter_execve).

Now we have everything in place to build our app:

Let us cat tracepipe first in a second terminal (webshell: don’t forget to connect to the vm first):

and in the first terminal execute our eBPF app:

Now we can see, that for each programm called in linux, our code is executed and writes “Hello world” to
trace_pipe.

Close now apps by hitting Ctrl+c, you can also close the second terminal.

Note
There are always two files created: bpf_bpfel.o for little endian systems (like x86) and bpfen.o for big
endian systems.

go mod tidy
go build helloworld.go bpf_bpfel.go
exit #exit container

sudo cat /sys/kernel/debug/tracing/trace_pipe

sudo ./helloworld

- acend gmbh

86 / 101

13. Cilium Enterprise
So far, we used the Cilium CNI in the Open Source Software (OSS) version. Cilium OSS has joined the CNCF
as an incubating project and only recently during KubeCon 2022 NA applied to become a CNCF graduated
project . Isovalent , the company behind Cilium also offers enterprise support for the Cilium CNI. In this lab,
we are going to look at some of the enterprise features.

Task 13.1: Create a Kubernetes Cluster and install
Cilium Enterprise
We are going to spin up a new Kubernetes cluster with the following command:

Now check that everything is up and running:

This should produce a similar output:

NAME STATUS ROLES AGE VERSION
cilium-enterprise Ready control-plane,master 86s v1.24.3

Alright, everything is up and running and we can continue with the Cilium Enterprise Installation. First we
need to add the Helm chart repository:

helm repo add isovalent https://....

Next, create a cilium-enterprise-values.yaml file with the following content:

minikube start --network-plugin==cni --cni==false --kubernetes-version==1.24.3 -p cilium-enterprise

kubectl get node

Note
Your trainer will provide you with the Helm chart url.

- acend gmbh

87 / 101

https://www.cncf.io/blog/2021/10/13/cilium-joins-cncf-as-an-incubating-project/
https://cilium.io/blog/2022/10/27/cilium-applies-for-graduation/
https://isovalent.com/

And then install Cilium enterprise with Helm:

To confirm that the cilium daemonset is running Cilium Enterprise, execute the following command and
verify that the container registry for cilium-agent is set to quay.io/isovalent/cilium :

Run the following command and validate that cilium daemonset is up and running:

This should give you an output similar to this:

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
cilium 1 1 1 1 1 <none> 91s

13.1. Network Visibility with Hubble

Task 13.1.1: Enable Hubble, Hubble Relay, and
Hubble UI
Edit your cilium-enterprise-values.yaml file so that it reads:

ciliumcilium::
 hubblehubble::
 enabledenabled:: falsefalse
 relayrelay::
 enabledenabled:: falsefalse
 nodeinitnodeinit::
 enabledenabled:: truetrue
 ipamipam::
 modemode:: cluster-pool
hubble-enterprisehubble-enterprise::
 enabledenabled:: falsefalse
 enterpriseenterprise::
 enabledenabled:: falsefalse
hubble-uihubble-ui::
 enabledenabled:: falsefalse

helm install cilium-enterprise isovalent/cilium-enterprise --version 1.12.7 \
 --namespace kube-system -f cilium-enterprise-values.yaml

kubectl get ds -n kube-system cilium -o jsonpath=='{.spec.template.spec.containers[0].image}' || cut -d: -f1

kubectl get ds -n kube-system cilium

- acend gmbh

88 / 101

Then, run helm upgrade command to apply the new configuration:

Task 13.1.2: Deploy a simple application
To accually see something with Hubble, we first deploy our simple-app.yaml from lab 03 again to run some
experiments. Run the following command using the simple-app.yaml from lab 03:

Now let us redo the task from lab 03.

Let’s make life again a bit easier by storing the Pod’s name into an environment variable so we can reuse it
later again:

Then execute

and

ciliumcilium::
 (...)
 extraConfigextraConfig::
 # Disable Hubble flow export.
 export-file-pathexport-file-path:: ""
 hubblehubble::
 enabledenabled:: truetrue
 tlstls::
 enabledenabled:: truetrue
 relayrelay::
 enabledenabled:: truetrue
 (...)
hubble-uihubble-ui::
 enabledenabled:: truetrue

Note
Running the helm upgrade command below will restart Cilium daemonset.

helm upgrade cilium-enterprise isovalent/cilium-enterprise --version 1.12.3+1 \
 --namespace kube-system -f cilium-enterprise-values.yaml --wait

kubectl apply -f simple-app.yaml

FRONTEND==$($(kubectl get pods -l app==frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${FRONTEND}
NOT_FRONTEND==$($(kubectl get pods -l app==not-frontend -o jsonpath=='{.items[0].metadata.name}'))
echo ${NOT_FRONTEND}

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

89 / 101

You see that altought we have no kube-proxy running, the backend service can still be reached.

HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 14 Dec 2021 10:01:16 GMT
Connection: keep-alive

HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 14 Dec 2021 10:01:16 GMT
Connection: keep-alive

Task 13.1.3: Access Hubble UI
To access Hubble UI, forward a local port to the Hubble UI service:

kubectl port-forward -n kube-system svc/hubble-ui 12000:80 &

In our Webshell environment you can use the public IP of the VM to access Hubble. A simple way is to
execute

and copy the output in a new browser tab. If you are working locally, open your browser and go to
http://localhost:12000/.

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

echo "http://$($(curl -s ifconfig.me)):12000"

- acend gmbh

90 / 101

Select the default Namespace and go to Service Map:

You should see our already deployed simple app with the frontend , notfrondend and backend Pod.

- acend gmbh

91 / 101

13.2. Network Policies

Task 13.2.1: Create a network policy with the Hubble
UI
The Enterprise Hubble UI has an intergate Network Policy Editor similar to the one we already know from lab
Cilium Network Policy. The Enterprise Network Policies Editor allows you to use knowlege of the current
flows to easealy create new policies.

Go to Network Policies :

And the create a new empty policy:

- acend gmbh

92 / 101

.

We now want to allow traffic from the frontend pod to the backend pod while traffic from not-frontend to
backend is blocked. In the right panel you the see existing flows. Select the flow from frontend to backend and

then click on the Add rule to policy Button. The Network Policy Editor now visualice the policy.

- acend gmbh

93 / 101

.

Edit the Policy Name to backend-allow-ingress-frontend and also add app=backend as the endpoint selector:

- acend gmbh

94 / 101

.

Afterwards download the CiliumNetworkPolicy which should look like:

Task 13.2.2: Apply Network Policy
Apply the file with:

apiVersionapiVersion:: cilium.io/v2
kindkind:: CiliumNetworkPolicy
metadatametadata::
 namename:: backend-allow-ingress-frontend
 namespacenamespace:: default
specspec::
 endpointSelectorendpointSelector::
 matchLabelsmatchLabels::
 appapp:: backend
 ingressingress::
 - fromEndpointsfromEndpoints::
 - matchLabelsmatchLabels::
 k8s:appk8s:app:: frontend
 k8s:io.cilium.k8s.namespace.labels.kubernetes.io/metadata.namek8s:io.cilium.k8s.namespace.labels.kubernetes.io/metadata.name:: default
 k8s:io.kubernetes.pod.namespacek8s:io.kubernetes.pod.namespace:: default
 toPortstoPorts::
 - portsports::
 - portport:: "8080"

kubectl apply -f backend-allow-ingress-frontend.yaml

- acend gmbh

95 / 101

and then execute the connectivity test again:

and

And you see the frontend application is able to connect to the backend but the not-frontend application cannot
connect to the backend :

Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 13:08:27 GMT
Connection: keep-alive

Not Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

Task 13.2.3: Observe the Network Flows
In the Hubble UI Service map you see now some dropped flows.

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080

kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

96 / 101

.

By clicking on the Review button, the enterprise Hubble UI allows you to see which Network Policy was the
reason for the dropped verdict.

- acend gmbh

97 / 101

13.3. Process Visibility

Task 13.3.1: Enable Process Visibility
Edit your cilium-enterprise-values.yaml file so that it reads:

Then, run helm upgrade command to apply the new configuration:

Task 13.3.2: Validate the Installation
First, please run:

and ensure that all the pods for hubble-enterprise daemonset are in READY state.

Run hubble-enterprise command to validate that Cilium Enterprise is configured with process visibility
enabled:

and you will see process events from one of the hubble-enterprise pods in JSON format.

Task 13.3.3: Export logs and visualize in Hubble UI
Process Tree
Execute the connectivity test from frontend to backend again to make sure we have some data to visualize:

ciliumcilium::
 (...)
hubble-enterprisehubble-enterprise::
 enabledenabled:: truetrue
 enterpriseenterprise::
 enabledenabled:: truetrue
 (...)

helm upgrade cilium-enterprise isovalent/cilium-enterprise --version 1.12.7
 --namespace kube-system -f cilium-enterprise-values.yaml --wait

kubectl get ds -n kube-system hubble-enterprise

kubectl exec -n kube-system ds/hubble-enterprise -c enterprise -- hubble-enterprise getevents

kubectl exec -ti ${FRONTEND} -- curl -I --connect-timeout 55 backend:8080
kubectl exec -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 55 backend:8080

- acend gmbh

98 / 101

Then, use the following command to export process events from hubbe-enterprise:

In the Hubble-UI open the Process Tree and click on the Upload Button. Upload the previously created
export.log . Now you can select the default Namespace and one of the Pods, e.g. frontend-xxxxx-xxx .

.

We see our previously executed curl command and that the process opened a connection to an IP on Port
8080.

By clicking on one of the event, e.g. the Connect event for the curl command, you get some more details for
the selected event.

kubectl logs -n kube-system ds/hubble-enterprise -c export-stdout --since==1h > export.log

- acend gmbh

99 / 101

13.4. Exporting Events

Task 13.4.1: Export Network Events
Edit your cilium-enterprise-values.yaml file and include export-file-path field to export network events:

Then, run helm upgrade command to apply the new configuration:

and restart cilium daemonset for the new filters to take effect:

Task 13.4.2: Export Process Events
Edit your cilium-enterprise-values.yaml file and include exportFilename field to export process events:

Then, run helm upgrade command to apply the new configuration:

Task 13.4.3: Observe Exported Events

ciliumcilium::
 (...)
 extraConfigextraConfig::
 # Enable network event export
 export-file-pathexport-file-path:: "/var/run/cilium/hubble/hubble.log"
 (...)
hubble-enterprisehubble-enterprise::
 enabledenabled:: truetrue

helm upgrade cilium-enterprise isovalent/cilium-enterprise --version 1.12.7
 --namespace kube-system -f cilium-enterprise-values.yaml --wait

kubectl rollout restart -n kube-system ds/cilium

ciliumcilium::
 (...)
hubble-enterprisehubble-enterprise::
 enabledenabled:: truetrue
 enterpriseenterprise::
 # Enable process event export
 exportFilenameexportFilename:: "fgs.log"
 (...)

helm upgrade cilium-enterprise isovalent/cilium-enterprise --version 1.12.7
 --namespace kube-system -f cilium-enterprise-values.yaml --wait

- acend gmbh

100 / 101

Run the following command to observe exported events in export-stdout container logs:

Those exported events can now be sent to Splunk, Elasticsearch or similar.

kubectl logs -n kube-system -l app.kubernetes.io/name==hubble-enterprise -c export-stdout -f

- acend gmbh

101 / 101

	Setup
	1. Cleanup

	Labs
	1. Introduction
	2. Install Cilium
	3. Hubble
	4. Metrics
	5. Troubleshooting
	6. Network Policies
	7. Cilium Network Policies
	8. Transparent Encryption
	9. Cluster Mesh
	10. Advanced Networking
	11. Cilium Service Mesh
	12. eBPF
	13. Cilium Enterprise

